UCRL-ID-122243

Vendor Assessment
and Software Plans

Prepared by
G. G. Preckshot
J. A. Scott

Prepared for
U.S. Nuclear Regulatory Commission

FESSP
Fission Energy and Systems Safety Program

Lawrence Livermore National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or
the University of California, and shall not be used for advertising or product endorsement purposes.

This work was supported by the United States Nuclear Regulatory Commission under a Memorandum of
Understanding with the United States Department of Energy, and performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Vendor Assessment
and Software Plans

Version 2.0

G. G. Preckshot
J. A. Scott

Manuscript Date: November 1995

UCRL-ID-122243

ii

CONTENTS

1.0 Introduction 1
1.1 SCOPE AN PUIPOSE ...ttt sttt 1
1.2 Design Outputs Versus Traditional Manufacturing QOutputsccceeieiieiiiiiicicceecc 1
1.3 Software Development PrOCESS...........ceviirieiiiiiiiie et 1

2.0 Summary of Key Aspects of Previous Work.... 2
2.1 Standards FIameWOTK ... 2
2.2 Summary of Vendor ASseSsment STEPS.........ccoeuiuiiiiiieieiicee e 4
2.3 Summary of SOftware DeSIZIc.ccuouiiiiiiice e 4

3.0 Mapping Vendor Assessment Activities to Plans veeew B

4.0 Plan Audits 5
4.1 Software Project Management Plan—SPMP (§4.1.1)cccecvuuriiiiminiiininiiicccie s sessses 6
4.2 Software Quality Assurance Plan—SQAP (§4.1.2).....ccccoueuiririciriiiiiciiicieicieieieeeieieicessie e 8
4.3 Software Configuration Management Plan—SCMP (§4.1.3)ccceururuirmiininiiiiniisiccicicsiesnsssssisiesenn 10
4.4 Software Verification and Validation P1an—SV VP (§4.1.4)c.ceeiiririereieiereteeeeeteeseeseve et 12
4.5 Software Safety PIan—=SSP (§4.1.5)......cccciuriiiiiiciiciricieiceicteicte ettt 14
4.6 Software Development Plan—SDDP (§4.1.6).......cccccuviruriiiiiiriiiniciricieicieieieiciessieseiese e 16
4.7 Software Integration Plan——SIP (§4.1.7)......cccceiruriuiuiiriiiriciicisieiricieieieieiee et 18
4.8 Software Installation P1an—=SIP (§4.1.8).......ccccveieiereuiirieiereteeriereteit ettt ettt s et s s s s sessssesesens 20
4.9 Software Maintenance Plan SMP (§4.1.9)cocoiiueiieiereieiieeteeeete ettt ettt ettt s et sessssssesebasnan 20

RELEIOIICES ...ttt bbb bbb bbb s b e bbb e b e bbb sees 23
Appendix A: Vendor Assessment ProCess.........ccueueeeneeniiesnnieesiieninsesnssessnssesnesessssssssssessssenes 25

A1.0 Introduction.... 29
AT.1 NO SIIVET BUILEL....eiiiicc e e e e e 29
AT.2 NOt @ ONE-StOP PrOCESS......ccoviviviiiiitiiititititiiicicttttrs sttt b bbbt b sttt 29
A1.3 QuAlity i PeriSRADIEcuevieieiiiciicirc ettt 29
AT.4 INSULFICIENT RECOTAS ...t e e e e 29
A1.5 Statistically Invalid Data.........cccoiiiiiiiiiiiiiiiii s 29

A2.0 Seven Steps to Assessment.. 30
A2.1 Determine CritiCAlITYc.ceiiiiuiieeieiceeeeeeeee e e e e e e senenen 30
A2.2 DeterMine INEEITACESc.ciiuiiiiiiiiicieicecee e e e e e e e be bbb senenes 30
A2.3 Evaluate HiStOIY .. oottt 30
A2.4 Evaluate Current PrOZIam ... 30
A2.5 Check fOr Negative FACLOTS.cocuiuiiiiiciiiiiie et 30
A2.6 Evaluate Vendor COMMUIMENtS ... 30
A2.7 Perform PeriodiC REVIEWSccciiiiiiiiiicitece ettt ettt 31

A3.0 Determine Criticality 31

A4.0 Determine Organizational Interfaces 31

A5.0 Evaluate Vendor HISTOTYiininninininininininiinisiisisiisisisisisisisisisisssssssssissses 32

A6.0 Evaluate Current Vendor PrOSraml......inininininininiisisisisisisisisisssisssisisiss 33
AB.1 OrganiZationcciuiviuiiiiiii bbbttt b ettt 33
AB.2 PLANS ..ot e 33
A6.3 Product REQUITEIMENES......c.cuivimiiiiiiiiieitititciiciitt sttt b s bbb st st 33
A4 LR CY Tl e e e nene 34

1ii

iv

A6.5 Verification & Validation ...t 34
A6.6 OppOorttunity fOr ATUILS.coiuiuiiiiiiiiccceecee e 34
A7.0 Check for Negative Factors.. 35
A8.0 Evaluate Commitments 35
A9.0 Perform Periodic Reviews. .35
Appendix B: Critical Assessment of Software Design Factors.............cvueeuecnnncennccncncnnnes 37
B1.0 Introduction 45
B1.1 CONtents Of the PAPer........cc.cuccuiiuiiuriiieiiciicitcitie ittt e 45
BL.2 SOUTCES ..ottt 45
B1.3 Data SoUICe Bi@Ses........ccoeuiiiiiiiiiiiiiiiicc e 46
B1.4 Categories for “Design FactOrs”ccooviiiiiiiiiiiiicciccc e 47
B2.0 Influences 0n FActor CROICES........couiiiiiiciniiiiiiiiicnciniiiiinnsisisses 48
B2.1 POINE Of VIEW ..ttt sttt et sttt sa e 48
B2.2 OrganizationN.......ccoiiiiiiiiieec e 50
B2.3 BUSINESS ...ttt 50
B3.0 Comparison of Design Factors 51
B3.1 SEI/TSO VETSUS TASK 2 ...ttt ettt ettt sttt ettt ettt bbbt eens 51
B3.2 Other Factors NOt in EIther LiSt.......cccuruierueiriiieieirceieieiseeie sttt 55
B4.0 Assessment of Factor Utility for Regulation 55
B4.1 Essential Design FACtOTScocvvviiuiiiiiiiiiicieiccte sttt 56
B4.2 Other Design FaCtOrS.........c.cuuciiiiiiiiiiiicii s 58
B4.3 Product FACLOTScoiiiiiiiii e 59
B4.4 Negative FaCOTSo.oiuiiiiit ettt 59
Annex A—Design Factors.. 61
A.1.0 Part 1—Detailed Design Factors.... 61
AT GENETal FACLOTS ..ottt sttt et s et s et s st a e 61

A 1.2 Process CONLIOL FACLOTSco.cucuiiriiieiiiirieiciiieieeteeeett ettt et se ettt s e 63
A.1.3 Management FaCOTS.......cviiiiiiiiicie ettt ettt b sttt et 63
A 1.4 PersOnNe]l FACIOTS ..ottt ettt ettt a e 65
A.1.5 Development FACIOIS.oociviiiiiiiicie ettt 65
A.1.6 Reliability and Safety FACLOIScoviiiiiiiiiiicc e 68
AL7 NeGatiVE FaCOTS....cuouieiiiiiiiiiic s 69

A 1.8 Product FACOTS. ..o 71
A.2.0 Part 2—Managerial/Technical View 72
A.2.1 Management Design FaCtOrScoviuiuiuiiiiiccccctcctctt sttt 72
A.2.2 Technical DeSign FACLOTScccuiiiiiiiiiciciic s 73
A.3.0 Part 3—SEI/ISO FACOT LiSt.....ccvuuviiuriiriiriiissiisenisinsisessissssissssissssisesssssssssesssssssssssssssssssssssssssasssssssssssssssssssssssess 75
A.3.1 Management (IMIN)ccoiiiiiiiii i 75
A.3.2 SOftWAre Life CYCle (SL) ...ttt ettt 75
A.3.3 SUPPOrting ACVIIES (SA)......cciiiiiiiiiiiiiiiii s 76
A.3.4 CONITACEUAL (CT)uuvivirieieeeeeeteeeteeetee ettt ettt ettt ettt et eae ettt e s e s e s e s e seseesesseseseesessesensesensesessessnsessnseseaseseesessesensenenn 76
Annex B: Task 16A Vendor Assessment—Merged List of Factors... 77

LIST OF FIGURES

Figure 1. Key Standards and Regulatory Guide Endorsement............cccccoviiiviiiniiininiiiniiicesennes 3
Figure 2. Relationships of Current Versions of the Key Standards............cccceucuiiniininicinciniiniccicnsecicscecseeiee 3
Figure 3. System Elements Addressed by Standards in the U.S. Standards Framework..........cccccccuccuvciniiniricincincnnnen. 4
LIST OF TABLES
Table 1. Seven major steps to VeNndor aSSeSSIMENLc.cciuiuiuiiiiiiiiccccc e 5
Table 2. Mapping of SPMP Questions t0 ASSESSINENt SLEPS......c.cucuiuimimimimiuiuimiiimiieiiiiieeieeeeiereree e nenenes 7
Table 3. Mapping of SQAP Questions to ASSESSIMENT STEPS......c.ccucuiuiuimimiuiiiiiiiicieeeeieeeeerere e 9
Table 4. Mapping of SCMP Questions to ASSESSINENE SEEPSc.cueviuiuiuiuiiiiiiiiiiiieicieieieieeee e 11
Table 5. Mapping of SVVP Questions t0 ASSESSIMNENt SEEPS......c.cucuiuiuimimiuiuiiiiiiiiiiiiiceeeeeeeeeieie e senenes 13
Table 6. Mapping of SSP Questions to ASSESSIMENt SLEPS........ccccuiuiiiiimiiiiiiiiieeetrece e eeaes 15
Table 7. Mapping of SDP Questions to ASSESSIMENt SLEPS........cccuiuimimimiuiuimiiimiiiiieeeeeeeeeeiee e sesenenes 17
Table 8. Mapping of SW Integration Plan Questions to Assessment Steps...........cccuwiiiiiiiiinineiniiiececeeeeenes 19
Table 9. Mapping of SW Installation Plan Questions to Assessment Stepsc.ccoceeueucecieiecceiceeeerceeeenenenen 21

Vi

Vendor Assessment
and Software Plans

1.0 Introduction

Several previous studies performed for the Nuclear Regulatory Commission by Lawrence Livermore
National Laboratory have focused on characteristics of software development processes that are
important for the development of high-integrity software. These include software reliability
(NUREG/CR-6101, Lawrence [1993]) and software design factors (NUREG/CR-6294, Lawrence and
Preckshot [1994] and Ploof and Preckshot [1993]). Ploof and Preckshot [1993] has been included as
Appendix B of this report. In addition, recent analyses of standards important to the development of
software for the safety systems of nuclear power plants have indicated the importance of the
understanding and use of a complete framework of standards in the development of such software
(Scott et. al. [1995]). Finally, Preckshot [1994] (Appendix A) addressed the assessment of software
development processes used by software vendors. The latter work defined a set of steps to be followed
in conducting vendor assessments. This report relates, in detail, the vendor assessment steps to the
planning audits proposed in NUREG/CR-6101. The correspondence of the vendor assessment steps to
the design factor categories of NUREG/CR-6294 is also discussed.

1.1 Scope and Purpose

The scope of this paper covers assessment of vendors producing software under programs that comply
with NQA-1, IEEE Std 603, and IEEE Std 7-4.3.2, and that use additional standards that are compatible
with the framework defined by these three standards. The intention of the paper is to describe a
correspondence between software design, reliability, and vendor assessment factors uncovered by
previous work and the content and execution of plans required by standards.

1.2 Design Outputs Versus Traditional Manufacturing Outputs

For software quality assurance (QA), design outputs occupy the same place as manufacturing outputs
do in traditional quality assurance theory. The only manufacturing process clearly involved in software
is the replication of executable code either on disk or in ROM, and quality assurance of the replication
process is relatively trivial. Arguably, compilation and linking may also be a manufacturing process;
however, the design outputs from the software development process form a far more significant
portion of the product than the replication, compilation, or linking processes or their possible statistical
variations. Vendor assessment and software development process assessment are, therefore, essential
to software product evaluation.

1.3 Software Development Process

The software development process converts design inputs, or software requirements derived from
system requirements, to design outputs through a design process. The software design process is
described by tangibles that prescribe the design process, such as the various planning documents
addressed by this paper, NUREG/CR-6101, and various standards of the standards framework
described below. The software design process produces a number of intermediate design outputs, such
as high-level design, detailed design, and code. The software development process consists of a series
of design and design verification stages, with the design outputs of one stage being the design inputs of

1

the following stage. The manufacturing process consists of duplicating executable binary code at the
end of several design and implementation stages, a step that is trivial compared to the complexity of
the preceding stages. Therefore, the intermediate and final design outputs of a software product are of
great importance. It is tempting to apply statistical methods to the products of a software design
process in an attempt to characterize the design process. Unfortunately, unambiguous and repeatable
process measures and an underlying theoretical basis have been elusive (Preckshot [1993], Preckshot
and Scott [1994]). Consequently, the quality of a software development process is judged by heuristics
and attributes, such as those described in NUREG/CR-6101, NUREG/CR-6294 , and Preckshot [1994].
Because there are no reliable process measures, the problem with heuristics becomes one of application.
This paper establishes a connection between vendor assessment heuristics and the Lawrence
questionnaires for various standards-prescribed software plans so that vendor assessment heuristics
can be applied by reviewing vendor software planning and software plan execution.

2.0 Summary of Key Aspects of Previous Work

Previous work that is being brought together in this paper consists of a description of the nuclear
quality assurance and software process standards framework extant in the United States, a proposed
vendor assessment process based on design factors work, and software reliability guidance in the form
of questionnaires to apply to software planning documents.

2.1 Standards Framework

Adhering to standards in the development of systems and software does not guarantee high integrity;
however, it does ensure that currently accepted practices will be employed. In general, standards
represent consensus thinking on the state of the practice and provide an accepted basis for the
structuring of software development processes. To structure an effective software development process
based on standards, it is necessary to be familiar with the detailed requirements of individual
standards as well as the relationships among the standards, including software standards and
standards specific to the nuclear industry. Multiple standards frameworks exist and variations of a
given standards framework are likely in different software development environments. The important
commonalities are the structuring of a standards-based, high-integrity software development process
and a complete understanding of the role played by the suite of related standards in the quality
assurance process. An incomplete understanding of the standards framework and its relationship to a
proposed software development process may leave assurance objectives unfulfilled and expend effort
without commensurate results.

A standards framework that is important for nuclear power plants in the U.S. includes ASME NQA-1-
1994, “Quality Assurance Requirements for Nuclear Facility Applications,” IEEE nuclear industry
standards such as IEEE 603-1991, “Criteria for Safety Systems for Nuclear Power Generating Stations,”
and IEEE 7-4.3.2-1993, “Criteria for Digital Computers in Safety Systems of Nuclear Power Generating
Stations.” In addition, various IEEE software engineering standards provide detailed guidance on
software development. Figure 1 shows the relationships among 10 CFR 50 Appendices A and B, NRC
Regulatory Guides, and the system-level standards in this framework. Figure 2 shows the
interrelationships among the current versions of the standards referenced in Figure 2. Figure 3 shows
the system elements covered by the various standards in the framework.

ANSI/ASME NQA-1-1983
NQA-1a-1983 Addenda

10CFR50 App. B Reg Guide 1.28 (rev 3) Quality Assurance Program
Requirements for Nuclear
Power Plants

10CFR50 App. A 10CFR50.55 (a)h

Reg Guide 1.153

IEEE 603-1980 — IEEE 7-4.3.2-1982 —

Adds Criteria to 603 for
Digital Computers in Nuclear
Power Generating Stations
Safety Systems

Criteria for Safety Systems in Reg Guide 1.152
Nuclear Power Generating
Stations (system-level)

Figure 1. Key Standards and Regulatory Guide Endorsement

ASME NQA-1-1994 —
Quality Assurance Requirements for Nuclear Facility Applications

Part 1 Part 2 Part 3 (non-mandatory)
Basic Requirements and Quality Assurance Nonmandatory Guidance on
Supplementary Requirements Requirements for Nuclear Quality Assurance Programs
for Nuclear Facilities Facility Applications for Nuclear Application
(from former NQA-1) (from former NQA-2) (formerly nonmandatory
appendices to NQA-1)

Includes Subpart 2.7

A

Software
reference

IEEE 603-1991 =~ IEEE 7-4.3.2-1991

Criteria for Safety Systems of Criteria for Digital Computers in

Nuclear Power Generating Stations Safety Systems of Nuclear Power
Generating Stations

Figure 2. Relationships of Current Versions of the Key Standards

System
Perspective

r@
?i Design Criteria 4732 o

System

Hardware Computer Integration -
(non-computer) | | Hardware SW Design

SW Requirements

SW Implementation

SW Test ‘

SW Installation v
SW O&M

828/1042 —+ SW Configuration Management
1028 + SW Reviews/Audits

Figure 3. System Elements Addressed by Standards in the U.S. Standards Framework

2.2 Summary of Vendor Assessment Steps

The proposed vendor assessment steps are listed below for reference and in Appendix A [Preckshot
1994]. The seven major steps are shown in Table 1. These steps were formulated by considering “design
factors” (described in the following section) as a guide for reviewing vendor documentation and
vendor interviews. During the formulation of the vendor assessment steps, the documentation to be
reviewed was not limited to planning documents, and the interviews to be done were not limited to
audits of plan performance.

2.3 Summary of Software Design

The vendor assessment steps are based on interpretation of software design factors as applied to a
vendor’s software development process. NUREG/CR-6294 defines the term “design factor,” describes
7 design factors as mandatory (no deviation is acceptable) for high-integrity software development,
and 9 as essential (some deviation is acceptable). A total of 74 design factors were determined by
interviews with professional software developers, a workshop involving several noted academics and
technical contributors, and a review of a broad spectrum of consensus standards.

Table 1. Seven major steps to vendor assessment

1. Determine Criticality

2. Determine Organizational Interfaces

3. Evaluate Vendor History

4. Evaluate Current Program

5. Check for Negative Factors

6. Evaluate Commitments (or Execution of Commitments)
7. Perform Periodic Reviews

3.0 Mapping Vendor Assessment Activities to Plans

In Section 4.0, the 7 steps of the vendor assessment process are mapped to the plan assessment
questions given in NUREG/CR-6101. Both the content (which questions apply to specific areas) and
timing (when to ask the questions) of the assessment process are covered. A correspondence between
general guidance given in Preckshot [1994], and specific assessment guidance in NUREG/CR-6101 is
made. Suggestions for evaluating vendor history, evaluating the current program, and evaluating
commitments using the plan assessment questions are noted.

Plan assessment should also verify the software organization’s understanding and commitment to
standards or their use in company-specific standards. Plan assessment (and assessment of performance
of previously reviewed plans) is made at intervals, such as those listed below:

1. At the beginning of the project

After requirements are done, but before design
At the completion of top-level design

At the completion of detailed design

At the completion of implementation

After system integration and validation

NSOk e

After each delivery and plant installation.
4.0 Plan Audits

Assessment questions in §4.1 of NUREG/CR-6101 are related in this section to the major headings of
the proposed vendor assessment procedure. The purpose is to demonstrate how the questions
proposed by Lawrence [1993] can be used to achieve the objectives of Preckshot [1994]. Plan audits
would be done at intervals as described above. An essential part of plan audits is keeping records of
audits and tracking compliance and consistency with past performance.

In the following, NUREG/CR-6101 is referred to as “Lawrence,” the section numbers refer to sections
in that document, and the question numbers refer to questions in the cited sections. Tabular
correlations between Lawrence questions and subjects and the vendor assessment steps are provided,
along with accompanying narrative explanations. The steps “Evaluate Vendor History” and “Evaluate
Current Program.” are closely related and appear together in the tables. They address the same topics,
but from retrospective and propsective viewpoints. The former step is concerned with past plans and
their execution and the latter is concerned with proposed plans and the likelihood of their success as
indicated by past plans and past results. The tables provide easily accessible numeric question number
correlations, while the narratives provide more extensive explanations than are possible with tables.
Corresponding tables and narratives are placed on opposing pages for convenient cross referencing.

5

4.1 Software Project Management Plan—SPMP (§4.1.1)

Table 2 shows a summary of the relationships between Lawrence and the vendor assessment steps with
respect to topics covered by the SPMP. Further discussion is given below.

Determine Criticality

Lawrence suggests that the size, scope, and contents of the plan be appropriate to the level of safety
criticality. Generally, criticality would be determined at project outset, and the amount of audit effort
and scrutiny would be determined at that point.

Determine Organizational Interfaces

The questions noted in Table 2 examine organizational interfaces from various perspectives:
organizational structure, boundaries, and defined interfaces; responsibilities for deliverables and
project activities; and interactions with project support functions.

Evaluate Vendor History

This is an examination of: previous risk management activities, previous projects accepted, adequacy of
planned reports and feasibility of planned staffing and training as indicated by the results of previously
executed plans, and anticipated documentation be produced under the SPMP. The questions on
methods, tools, and techniques should focus on records of approaches applied to previous products
that answer the detailed technical questions in Lawrence and that provide an indication that the SPMP
is feasible due to prior success.

Evaluate Current Program

Given the answers to “Evaluate Vendor History,” are the planned milestones and deliverables feasible
in light of demonstrated competence?

Check for Negative Factors

Do project priorities, as supported by pay and promotion history, match the stated commitment to
safety? At the SPMP audit stage, only vendor history can provide answers to the other negative factor
questions, except that answers regarding process model and staffing may indicate unrealistic schedules
or resource allocations, or an underfunded effort.

Evaluate Commitments (or Execution of Commitments)

These questions regarding the SPMP represent commitments of resources and auditable deliverables.
None of these are design commitments. No Lawrence question addresses commitments to adhere to
promises made in the SAR or to Appendices A or B of 10 CFR 50.

Perform Periodic Reviews

At subsequent audits, the follow-through question measures how well the commitments in the SPMP
are being followed.

Table 2. Mapping of SPMP Questions to Assessment Steps

NUREG/CR |Vendor NUREG/CR |Vendor NUREG/CR |Vendor Vendor NUREG/CR |Vendor INUREG/CR |Vendor NUREG/CR |Vendor
6101 Assessment 6101 Assessment 6101 Assessment Assessment 6101 Assessment 6101 Assessment 6101 Assessment
Step Step Step Step Step Step Step
Determine Evaluate Evaluate Check for Perform
Section or |Determine Section or |Organizational |Section or |Vendor Current Section or |[Negative Section or |Evaluate Section or |Periodic
Question |Criticality JQuestion |Interfaces Question |History Program Question |Factors Question |CommitmentsjQuestion |Reviews
Number |Subject Number Subject Number Subject Subject Number Subject Number Subject Number Subject
4.1.1.1 Grading by 1.9 Deliverables 1.all Previous Process Model |1.all Process Model j1.all Process Model |13.a Plan vs Actual
Safety Responsibility Process Models
2.all Organizational 6.all Past Assumptions & [1.h Adequate 18.all Monitoring &
Structure Assumptions & |Constraints Resources Controlling
Constraints
3.all Organizational 7.all Historical Risk |Planned Risk 5.all Project 9.all Staffing
Boundary & Management Management Priorities
Interface
4.all Project 8.all Previous PlannedMonitor]9.all Staffing 11.all Software
Responsibility Monitoring & ing & Control Documentation
Controlling
Activities
12.a Support 9.all Previous Proposed
Functions Staffing Staffing
10.all Methods, Tools, |Methods, Tools,
Techniques Techniques
11.all Historical Planned
Software Software

Documentation

Documentation

4.2 Software Quality Assurance Plan—SQAP (§4.1.2)

Table 3 shows a summary of the relationships between Lawrence and the vendor assessment steps with
respect to topics covered by the SQAP. Further discussion is given below.

Determine Criticality

Lawrence suggests criticality determination for determining size and scope of the SQAP. Answers to
the general questions on size and scope are necessary to determine criticality, since they identify the
software to which the SQAP applies.

Determine Organizational Interfaces

Most of the management questions determine the relation of the SQAP and responsible people to other
activities. The definition of life cycle phases describes the temporal interface between SQA activities
and other project activities.

Evaluate Vendor History

The questions on documentation and reviews and audits can be demonstrated by presenting examples
of documents from a previous effort during the initial SQAP audit. Verification of answers regarding
problem reporting and corrective action relate to prior history of problem detection, defect tracking,

root cause determination, and resolution. During an SQAP audit, this appears to be the only way to
check vendor SQA history.

Evaluate Current Program

Mandatory SQA tasks are examined while questions on requirements, design, and test describe life-
cycle phase-specific tasks that Lawrence considers necessary for an SQA program.

Check for Negative Factors

No questions address requirements stability. Problem detection, defect tracking, root cause
determination, and resolution are evaluated as well as independence and provisions for adverse SQA
comment.

Evaluate Commitments (or Execution of Commitments)

The question on standards requires naming the standard to which the SQAP was written, if one was
used. The remaining questions address audit commitments, task commitments for assurance objectives,
and defect tracking commitments.

Perform Periodic Reviews

No specific requirement under Lawrence exists to revisit the SQAP, but presumably activities
described need to be verified on subsequent audits.

Table 3. Mapping of SQAP Questions to Assessment Steps

NUREG/CR |Vendor NUREG/CR |Vendor NUREG/CR |Vendor Vendor NUREG/CR |Vendor INUREG/CR |Vendor NUREG/CR |Vendor
6101 Assessment 6101 Assessment 6101 Assessment Assessment 6101 Assessment 6101 Assessment 6101 Assessment
Step Step Step Step Step Step Step
Determine Evaluate Evaluate Check for Perform
Section or |Determine Section or |Organizational |Section or |Vendor Current Section or |Negative Section or |Evaluate Section or |Periodic
Question |Criticality JQuestion |Interfaces Question |History Program Question |Factors Question [CommitmentsjQuestion |Reviews
Number |Subject Number Subject Number Subject Subject Number Subject Number Subject Number Subject
1.all Size & Scope |2.all Management 2.d Historical Tasks|Mandatory 2.b Independence [Jl.c Standard 5,6,7,8,9 |Areas for re-
(exc c,d) Tasks visit
2.c Life Cycle Phaseq3.all Historical Planned 9.all Problem Rptg / §4.all Review & Audit
Documents Documents Corr. Action
4 .all Historical Planned Review 5,6,7,8 Task
Review & Audit |& Audit Commitments
5.all Previous Requirements 9.all Problem Rptg /
Requirements |Review Corr. Action
Review
8.all Previous Test |Test
9.all History of Plans for
Problem Rptg / |Problem Rptg /
Corr. Action Corr. Action

4.3 Software Configuration Management Plan—SCMP (§4.1.3)

Table 4 shows a summary of the relationships between Lawrence and the vendor assessment steps with
respect to topics covered by the SCMP. Further discussion is given below.

Determine Criticality

Lawrence suggests that safety-related software projects should have an SCMP. SCM is mentioned by
Lawrence and Preckshot [1994] as a mandatory design factor.

Determine Organizational Interfaces

Organizational interfaces, responsibilities, and interfaces to suppliers and other projects are addressed
directly.

Evaluate Vendor History

Existing SCM organizations provide a source of vendor SCM history. Historical policy, if such exists,
and examples of status accounting, configuration audits, and reviews assure the reviewer of the
organization’s ability to carry out the plan and audit its implementation.

Evaluate Current Program

Plans for interface control, SCM policies, configuration identification, change control, change authority,
and supplier control are all covered. This should be sufficient to evaluate the currently planned
program.

Check for Negative Factors

Support for problem reporting and the change process as well as resource issues for SCM are
addressed.

Evaluate Commitments (or Execution of Commitments)

SCM requires commitments in a number of areas. These include resource commitments, skill
commitments, and items to be listed as committed configuration items. The latter has particular
importance because it describes the scope of SCM application. Commitments to configuration
identification, change management, and status accounting methods are necessary for implementation
of the SCM process. Commitments to configuration audits are the only way an outside reviewer will
have visibility into the SCM operation. Altogether, the Lawrence questions constitute a searching
examination of commitments made in the SCMP. These questions should be revisited during periodic
reviews to see how well the commitments have been carried out.

Perform Periodic Reviews

Periodic review is necessary to see if the SCMP is actually being followed.

10

Table 4. Mapping of SCMP Questions to Assessment Steps

NUREGI/CR |Vendor NUREG/CR |Vendor NUREG/CR |Vendor Vendor NUREG/CR |Vendor NUREGI/CR |Vendor NUREG/CR |Vendor
6101 Assessment 6101 Assessment 6101 Assessment Assessment 6101 Assessment 6101 Assessment 101 Assessment
Step Step Step Step Step Step Step
Determine Evaluate Evaluate Check for Perform
Section or |Determine Section or |Organizational JSection or |Vendor Current Section or |Negative Section or |Evaluate ection or |Periodic
Question |Criticality JQuestion |Interfaces Question [History Program Question |Factors Question |CommitmentsfQuestion |Reviews
Number |Subject Number Subject Number Subject Subject Number Subject Number Subject INumber Subject
4.1.3.1 Required for J1.all Organization P.a Existing CM Existing CM 4.a Resource 1.b Skills 11.a SCM review
safety organization organization Adequacy
2.all SCM 3.b-e Historical Interface 5.c,d Change & Rptg |4.a Resources
Responsibility Interface Control Procedures
Control
3.a Organizational 5.all Historical Planned Policy |7.e,l,m,n Change Process |6 exc d,f,m |Config. Ident.
Interfaces Policy methods
4.b Coordination w |6.all Historical Configuration 5.c, 7.a- Change Mgmt
other projects Config. Ident. Identification h,,n, 8.c |commitments
10.all Supplier Control §7.all Historical Change Control 8.all Status
Control Accounting
8.all Historical Status 9.all Audits
Status Acctg Accounting
9.all Historical Configuration
Audits Audits
10.all Historical Supplier
Supplier Cntl [Control

11

4.4 Software Verification and Validation Plan—SVVP (§4.1.4)

Table 5 shows a summary of the relationships between Lawrence and the vendor assessment steps with
respect to topics covered by the SVVP. Further discussion is given below.

Determine Criticality

Lawrence §4.1.4.1 suggests that the size, scope, and complexity of the V&V effort should be governed
by the safety-criticality level of software covered by the plan. This should have been determined under
Lawrence §4.1.1. Lawrence also requires that the software covered by the plan be identified and checks
the identification of the criticality of individual software items.

Determine Organizational Interfaces

Interfaces to other plans are directly addressed. Interfaces to other activities and delineation of the
responsibilities of the various V&V participants are also important in this step.

Evaluate Vendor History

Lawrence requires SVVPs to be under CM, which may be a source of prior SVVPs for historical
evaluation. Anomaly reporting questions can be examined to see if anomaly reporting from previous
V&V efforts meets the reviewer’s expectations. Management overview provisions and V&V results
feedback to the development process can be queried for historical examples to prove adequacy.

Evaluate Current Program

Scope and application of planned V&V and resource commitments are addressed. Tools and
techniques, schedule and resources, planning for the minimal tasks, and coordination of V&V activities
with other development activities and the life cycle are also covered. In addition, precursor (before
requirements analysis) activities and life cycle phase activities are addressed. Lawrence implies, but
does not explicitly ask, a question that requires a direct tie between a defined life cycle, V&V activities,
and other development activities.

Check for Negative Factors

Underfunded effort and schedule-driven negative factors are addressed. The defect tracking and
anomaly reporting questions should provide appropriate coverage of the defect tracking negative
factor.

Evaluate Commitments (or Execution of Commitments)

Software committed to V&V is covered as is description of resource and schedule commitments.
Anomaly reporting and defect tracking commitments as well as specific vendor commitments to V&V
tasks to be executed at life cycle phases and to minimal V&V tasks are covered. Materials to be
evaluated are identified along with summaries, conclusions, and recommendations to be supplied.
Management overview commitments, V&V feedback to the development team, and commitments to
interface to the development and regulatory organizations as are investigated.

Perform Periodic Reviews
There is no specific Lawrence question for periodic update of compliance with the V&V plan.

However, periodic reviews of V&V activities at life cycle milestones would address this. Also, no
materials are specifically called out for audit save the installation configuration audit and a final report.

12

4.4 Software Verification and Validation Plan—SVVP (§4.1.4)

Table 5 shows a summary of the relationships between Lawrence and the vendor assessment steps with
respect to topics covered by the SVVP. Further discussion is given below.

Determine Criticality

Lawrence §4.1.4.1 suggests that the size, scope, and complexity of the V&V effort should be governed
by the safety-criticality level of software covered by the plan. This should have been determined under
Lawrence §4.1.1. Lawrence also requires that the software covered by the plan be identified and checks
the identification of the criticality of individual software items.

Determine Organizational Interfaces

Interfaces to other plans are directly addressed. Interfaces to other activities and delineation of the
responsibilities of the various V&V participants are also important in this step.

Evaluate Vendor History

Lawrence requires SVVPs to be under CM, which may be a source of prior SVVPs for historical
evaluation. Anomaly reporting questions can be examined to see if anomaly reporting from previous
V&V efforts meets the reviewer’s expectations. Management overview provisions and V&V results
feedback to the development process can be queried for historical examples to prove adequacy.

Evaluate Current Program

Scope and application of planned V&V and resource commitments are addressed. Tools and
techniques, schedule and resources, planning for the minimal tasks, and coordination of V&V activities
with other development activities and the life cycle are also covered. In addition, precursor (before
requirements analysis) activities and life cycle phase activities are addressed. Lawrence implies, but
does not explicitly ask, a question that requires a direct tie between a defined life cycle, V&V activities,
and other development activities.

Check for Negative Factors

Underfunded effort and schedule-driven negative factors are addressed. The defect tracking and
anomaly reporting questions should provide appropriate coverage of the defect tracking negative
factor.

Evaluate Commitments (or Execution of Commitments)

Software committed to V&V is covered as is description of resource and schedule commitments.
Anomaly reporting and defect tracking commitments as well as specific vendor commitments to V&V
tasks to be executed at life cycle phases and to minimal V&V tasks are covered. Materials to be
evaluated are identified along with summaries, conclusions, and recommendations to be supplied.
Management overview commitments, V&V feedback to the development team, and commitments to
interface to the development and regulatory organizations as are investigated.

Perform Periodic Reviews
There is no specific Lawrence question for periodic update of compliance with the V&V plan.

However, periodic reviews of V&V activities at life cycle milestones would address this. Also, no
materials are specifically called out for audit save the installation configuration audit and a final report.

12

Table 5. Mapping of SVVP Questions to Assessment Steps

NUREG/CR |Vendor NUREG/CR |Vendor NUREG/CR |Vendor Vendor —zcmmo\ox Vendor NUREG/CR |Vendor NUREG/CR |Vendor
6101 Assessment 6101 Assessment 6101 Assessment Assessment 6101 Assessment 6101 Assessment 6101 Assessment
Step Step Step Step Step Step Step
Determine Evaluate Evaluate Check for Perform
Section or |Determine Section or |Organizational JSection or |Vendor Current Section or |Negative Section or |Evaluate Section or |Periodic
Question |Criticality JQuestion |Interfaces Question |History Program Question |Factors Question |CommitmentsjQuestion |Reviews
Number Subject INumber Subject INumber Subject Subject INumber Subject Number Subject Number Subject
1.c Software 1.a,b Interfaces to 4.1.4.1 Old SVVPs under| SVVP under 2.b,c; 3.e-g Underfunding 1.c Software 9.b Installation
Covered Other Plans CM CMm? Covered Audit
4.b Criticality of J2a, 3.h-k |Organization & Jl.c-f Prior Scope Scope & 3.d,i; a of Defect Tracking]2.b,c; 3.e-g|Sched &
SW Items Responsibilities Application 5-10 Resource
Commitments
4.a,b Coordination w 2.b,c; 3.e-g|Historical Sched/Resource 3.d,i; Anomaly &
Other Tasks Resource Commitments part a. of 5-|Defect Tracking
Commitments 10 Commitments
2.d-f Previous Tools |Tools & 5-10.all Vendor
& Techniques | Techniques Commitments
3.a Historical min |Minimal Tasks 3.a,b Vendor-
Tasks minimal tasks
2.b; 3.a,j Past V&V Coordination of 3.c Evaluation &
Coordination V&V Summaries
3.d Anomaly Rptg |Anomaly 3.h Dev/Regulator
History Reporting Plansy Interface
3.j Management Management 3.j Management
Overview Overview Overview
3.k Results Results 3.k V&V Feedback
Feedback Feedback
4.b Past Precursor |Precursor
Activities Activities
5.all - Past Life Cycle |Life Cycle
10.all Activities Activities

13

4.5 Software Safety Plan—SSP (§4.1.5)

Table 6 shows a summary of the relationships between Lawrence and the vendor assessment steps with
respect to topics covered by the SSP. Further discussion is given below.

Determine Criticality

Lawrence §4.1.5.1 suggests that the size, complexity, and scope of the SSP should be dependent upon
the safety criticality level of the software product. The SSP is required to be under configuration
management control.

Determine Organizational Interfaces

Organizational structure and interfaces to other software organizations are covered. The relationship to
SCM and SQA activities as well as the interfaces to subcontractors are addressed.

Evaluate Vendor History

Previous examples of documentation can be examined for suitability. The safety program records
activity should be investigated and an appropriate question to ask is “Can you present examples of
previous safety program records?” Previous certification activities should also be investigated.
Evaluate Current Program

Authorities and independence, resources to be applied, training resources, and SCM are examined.
SQA is required but safety responsibilities lie with the safety organization. The application of safety
considerations to (software) tools is considered along with pre-existing software and subcontractor
safety evaluation provisions. Planned safety certifications are assessed if that is part of the SSP.
Check for Negative Factors

The whistle-blower negative factor is addressed directly. Defect tracking and unstable requirements
issues are addressed by concentrating on SCM change control mechanisms. Resources and training are
described, which addresses the underfunded effort negative factor.

Evaluate Commitments (or Execution of Commitments)

All noted commitments should be investigated.

Perform Periodic Reviews

This item addresses periodic reviews directly, by requiring, or questioning, whether the SSP continues
to be followed.

14

Table 6. Mapping of SSP Questions to Assessment Steps

Determine Evaluate Evaluate Check for Perform
Section or |Determine Section or |Organizational JSection or |Vendor Current Section or |Negative Section or |Evaluate Section or |Periodic
Question |Criticality JQuestion |Interfaces Question |History Program JQuestion [Factors Question |[CommitmentsjQuestion [Reviews
Number Subject Number Subject Number Subject Subject INumber Subject Number Subject Number Subject
4.1.5.1 Grading by 1.all Organization & |1.d-f; 6.c, |Historical Authority & 1.f, 4.b Whistle-blower1.all Authority & Orgf13.a Review
Criticality Responsibility }8.b; 9.d,e; |Independence Independence Commitments
7.all SCM 2.all Historical Resources 7.a,b Defect Tracking j2.all Resource
Resources Commitments
8.all A 3.all Past Training |Training 2.all; 3.all |Underfunding |[3.all Training
Resources Resources Commitments
11.all Subcontract 5.all Previous Safety |Planned Safety 5.all Documentation
Management Documentation |Documentation Commitments
6.all Safety Program |Planned Safety 6.all Records Format
Records Records & Retention
7.all SCM History |SCM Plans 9.all Tool Approval
8.all SQA History SQA Plans 10.all Purchased SW
Approval
9.all History with Plans for Tools 11.all Subcontractor
Tools Management
10.all; Historical Subcontractors; 12.a Certification
11.all Handling of Purchased SW
Subcontractors;
Purchased SW
12.a Previous Certification

Certifications

Plans

15

4.6 Software Development Plan—SDP (§4.1.6)

Table 7 shows a summary of the relationships between Lawrence and the vendor assessment steps with
respect to topics covered by the SDP. Further discussion is given below.

Determine Criticality

Lawrence says simply that safety critical projects should have a software development plan. There is no
suggestion that the SDP should be sized or scoped according to criticality. The SDP should be under
configuration management control.

Determine Organizational Interfaces

There are no direct organizational interface questions. Products available at life cycle phase
completions, as well as inputs are covered and milestones are related to the SPMP schedule.

Evaluate Vendor History

Previous software developments are examined to determine vendor practice.

Evaluate Current Program

Task timing and sequencing information of the current program should be evaluated against the SPMP
and other activities documented by the SVVP, the SCMP, and the SSP. Information about adequacy of
documentation is addressed. There are no questions that cover the following evaluation areas:
commitment to quality, training, process measurement, risk management by the developers, resource
allocation, or problem detection, analysis, and correction. Team coordination, which includes
acquisition and use of V&V results, is not mentioned. Methods, tools, and rules are addressed.

Check for Negative Factors

Schedule is covered, but there are no resource allocation questions or training questions, so the
underfunded effort and schedule-driven negative factors are indeterminable for the SDP. There are no
risk management questions or discussion of reliability, so that the optimistic reliability claim and
failure to meet predictions negative factors are indeterminable for the SDP. Likewise, there is no
mention of use of V&V results, so that defect detection, analysis, and resolution, at least as far as the
developers are concerned, is not determinable.

Evaluate Commitments (or Execution of Commitments)

Standards commitments, development schedule commitments, and technical documentation
commitments are addressed. There are no resource commitment questions.

Perform Periodic Reviews

Follow-up audits of plan execution are examined.

16

Table 7. Mapping of SDP Questions to Assessment Steps

NUREG/CR |Vendor NUREG/CR |Vendor NUREG/CR |Vendor Vendor NUREG/CR |Vendor NUREG/CR |Vendor NUREG/CR |Vendor
6101 Assessment 6101 Assessment 6101 Assessment |Assessment 6101 Assessment 6101 Assessment 6101 Assessment
Step Step Step Step Step Step Step
Determine Evaluate Evaluate Check for Perform
Section or |Determine Section or |Organizational |Section or |Vendor Current Section or |Negative Section or |Evaluate Section or |Periodic
Question |Criticality JQuestion |Interfaces Question |History Program JQuestion Factors Question |CommitmentsjQuestion Reviews
Number |Subject Number Subject Number Subject Subject INumber Subject Number Subject Number Subject
4.1.6.2 SDP Requiredj1.all Inputs & l.all; 4.all |Historical task |Feasibility of 1.all; 4.all |Schedule 3.all Standards 6.a Review
Products of Life timing proposed task Commitments
Cycle Phases timing
4.all Milestones & 2.all Historical usage|Methods & Toolsj 4.all Resource
SPMP Schedule of methods and Commitments
tools
4.all Historical Feasibility of 5.all Training
schedule Schedule Commitments
performance
5.all Historical Adequacy and
Technical Likelihood of

Documentation

Documentation

17

4.7 Software Integration Plan—SIP (§4.1.7)

Table 8 shows a summary of the relationships between Lawrence and the vendor assessment steps with
respect to topics covered by the SW Integration Plan. Further discussion is given below.

Determine Criticality

Lawrence suggests size, scope, and contents of the SIP should be determined by safety-criticality of
application. No yardstick is given. The SIP is to be under configuration management control.

Determine Organizational Interfaces

The relation of the SIP to the personnel responsible for SCM is considered; the SIP and delivery of SIP
products to the V&V effort are addressed. No other organizational interfaces are noted.

Evaluate Vendor History

Previous plans could be examined to determine the adequacy of previous efforts. Also, previous
interactions with the SCM and V&V organizations could be investigated.

Evaluate Current Program

Technical details are revealed by some questions. Resource allocations (personnel) are covered, as is
risk analysis and response.

Check for Negative Factors

Resource allocation and schedule are indeterminable. Contingency actions are covered; there are no
questions about dealing with anomalies.

Evaluate Commitments (or Execution of Commitments)
There are no questions Covering commitments to standards, schedule, or resources.
Perform Periodic Reviews

Determine if the SIP was followed.

18

Table 8. Mapping of SW Integration Plan Questions to Assessment Steps

NUREG/CR |Vendor NUREG/CR |Vendor NUREG/CR |Vendor Vendor NUREG/CR |Vendor INUREG/CR |Vendor NUREG/CR |Vendor
6101 Assessment J6101 Assessment 6101 Assessment Assessment 6101 Assessment 6101 Assessment 6101 Assessment
Step Step Step Step Step Step Step
Determine Evaluate Evaluate Check for Perform
Section or |Determine Section or |Organizational |Section or |Vendor Current Section or |Negative Section or |Evaluate Section or |Periodic
Question |Criticality JQuestion |Interfaces Question |History Program Question |Factors Question |CommitmentsjQuestion |Reviews
Number |[Subject Number Subject Number Subject Subject Number Subject Number Subject Number Subject
4.1.7.1 Grading by 4.d,e Link to SCM 1.all Historical Feasibility of 2.d,e; 4.c Contingency 5.a Review
Criticality stepwise planned Plans - Risk Performance
integration integration Management
steps
4.f Link to V&V 2.a,b Prior Adequacy of 3.b,c.d Stable Staffing
environment planned
and tools integration
environment
and tools
2.d,e; 4.c Historical Risk |Adequacy of
Management and|Risk and
Contingency Contingency
Plans Planning
2.c Historical Appropriate
Prioritization |priorities
of Integration
Activities
3.b,c,d Prior staffing | Adequacy of
Personnel
Allocations
4.all Prior Adequacy and
Integration completeness of
Procedures procedural
planning

19

4.8 Software Installation Plan—SIP (§4.1.8)

Table 9 shows a summary of the relationships between Lawrence and the vendor assessment activities
with respect to topics covered by the SW Installation Plan. Further discussion is given below.

Determine Criticality

Lawrence suggests that the size, scope, and contents of the SIP should be determined by the safety-
criticality level of the application. No yardstick is given. The SIP is to be under configuration
management control.

Determine Organizational Interfaces

No organizational interface questions are given.

Evaluate Vendor History

Prior installation procedures and prior installation plans can be examined to determine how they
worked.

Evaluate Current Program

Technical details are covered.

Check for Negative Factors

No installation defect or error tracking questions are given.
Evaluate Commitments (or Execution of Commitments)
There are no commitments to evaluate.

Perform Periodic Reviews

The success of one or more prior tests or attempts to implement the installation plan should be
examined.

4.9 Software Maintenance Plan SMP (§4.1.9)

The proposed vendor assessment procedure did not cover the maintenance phase of the software life
cycle. It was directed at vendors being assessed prior to and during production of a software product.

20

Table 9. Mapping of SW Installation Plan Questions to Assessment Steps

NUREG/CR |Vendor NUREG/CR |Vendor NUREG/CR |Vendor Vendor NUREG/CR |Vendor NUREGI/CR |Vendor NUREG/CR |Vendor
6101 Assessment 6101 Assessment 6101 Assessment Assessment 6101 Assessment 6101 Assessment 101 Assessment
Step Step Step Step Step Step Step
Determine Evaluate Evaluate Check for Perform
Section or |Determine Section or |Organizational |Section or |Vendor Current Section or |[Negative Section or |Evaluate ection or |Periodic
Question |Criticality JQuestion |Interfaces Question |History Program Question |Factors Question |CommitmentsfQuestion |Reviews
Number Subject Number Subject Number Subject Subject Number Subject Number Subject INumber Subject
4.1.8.1 Grading by 1.all Prior Adequacy of 4.a Review Dress
Criticality Installation Environment Rehearsal of
Environments |Planning Installation

2.all

3.all

Prior
Installation
Package
Descriptions
Prior
Installation
Procedures
Prior
Installation
Plan Tests

Completeness of
Proposed
Installation
Package
Feasibility of
Proposed
Procedures
Adequacy of
Proposed Test of
Installation
Activities

21

22

REFERENCES

ANSI/ASQC Q91-1987. “Quality Systems—Model for Quality Assurance in Design/Development,
Production, Installation, and Servicing,” American Society for Quality Control, identical to ISO
9000-1.

ASME NQA-1-1994. “Quality Assurance Requirements for Nuclear Facility Applications.”

Bamford, Robert, and William J. Deibler, II. 1993. “A Detailed Comparison of the SEI Software Maturity
Levels and Technology Stages to the Requirements for ISO 9001 Registration,” SSQC, San Jose, CA.

British Ministry of Defence. 1991. The Procurement of Safety Critical Software in Defence Equipment Part(1:
Guidance, Interim Defence Standard 00-55, 5 April 1991a.

British Ministry of Defence. 1991. The Procurement of Safety Critical Software in Defence Equipment Part 2:
Requirements, Interim Defence Standard 00-56, 5 April 1991b.

Humphrey, Watts S. 1988. “Characterizing the Software Process: A Maturity Framework,” IEEE
Software, March, pp. 73-79.

IEEE 603-1991. “Criteria for Safety Systems for Nuclear Power Generating Stations.”

IEEE-7-4.3.2-1993. “Standard Ceriteria for Digital Computers in Safety Systems of Nuclear Power
Generating Stations.”

International Organization for Standardization (ISO). 1993. Baseline Practices Guide, Spice Project,
ISO/IEC JTC1/SC7/WGIO0, Issue 0.05, September.

ISO 9000-3. 1987. “Guidelines for the Application of ISO 9000-1 to the Development, Supply, and
Maintenance of Software,” International Organization for Standardization (ISO).

Lawrence, J. Dennis. 1992. Workshop on Developing Safe Software: Final Report, Lawrence Livermore
National Laboratory, November 30.

Lawrence, J. Dennis. 1993. “Software Reliability and Safety in Nuclear Reactor Protection Systems,”
NUREG/CR-6101, UCRL-ID-117524, Lawrence Livermore National Laboratory (November).

Lawrence, J. Dennis. Letter to John Gallagher, NRC. Re: March 10 Meeting with TRW at LLNL. LLNL
CS&R 93-03-20, dated March 24, 1993a.

Lawrence, J. Dennis. Letter to John Gallagher, NRC. Re: June 1 Meeting with CSC. LLNL CS&R 93-07-
05, dated July 8, 1993b.

Lawrence,]. Dennis. Letter to John Gallagher, NRC. Re: July 23 Meeting with IBM. LLNL CS&R 93-08-
01, dated August 2, 1993c.

Lawrence,]. Dennis and G. G. Preckshot. 1994. “Design Factors for Safety-Critical Software,”
NUREG/CR-6294, Lawrence Livermore National Laboratory (December).

Leveson, Nancy G. and Clark S. Turner. 1993. “An Investigation of the Therac-25 Accidents,” Computer,
July, pp. 18-41.

MoD, See British Ministry of Defence.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. 1993. “The Capability Maturity
Model for Software, Version 1.1,” Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-93-TR-24, February.

Persons, Warren L. 1993. “Re: Visit with Hewlett-Packard Company, August 6, 1993,” Letter to John
Gallagher, NRC, LLNL CS&R 93-08-06, August 9.

Ploof, F. W. and G. G. Preckshot. 1993. “Critical Assessment of Software Design Factors,” Lawrence
Livermore National Laboratory (October). Attached as Appendix B.

Ploof, F. W. and G. G. Preckshot. 1993. “Subject: Assessment of Vendors (Task 16),” Letter to John
Gallagher, NRC, LLNL CS&R 93-08-18, August 20.

Preckshot, G. G. 1993. “Appendix B: Real-Time Systems Complexity and Scalability” of NUREG/CR-
6083, Reviewing Real-Time Performance of Nuclear Reactor Safety Systems.

23

Preckshot, G. G. 1993. “Assessing Commercial Off-The-Shelf (COTS) Software in Reactor
Applications,” Lawrence Livermore National Laboratory under contract to NRC, draft report under
review.

Preckshot, G. G. 1994. “Commercial Off-The-Shelf (COTS) Commercial Dedication Process,” Lawrence
Livermore National Laboratory under contract to NRC, draft report under review.

Preckshot, G. G. 1994. “Vendor Assessment Process,” Report, Lawrence Livermore National
Laboratory. Attached as Appendix A.

Preckshot, G. G. and J. A. Scott. 1994. “Prospective Software Complexity Measures for NRC Use,”
Letter Report, Lawrence Livermore National Laboratory, May 27.

Scott, J. A., G. G. Preckshot, J. D. Lawrence, and G. L. Johnson. 1995. “Issues and Relationships Among
Software Standards,” Draft Report, Lawrence Livermore National Laboratory.

24

Appendix A

Vendor Assessment Process

Manuscript date: May 6, 1994

Prepared by

G. G. Preckshot

Lawrence Livermore National Laboratory
7000 East Avenue

Livermore, CA 94550

26

APPENDIX A CONTENTS

A1.0 Introduction.... 29
AT.D NO SIIVET BUILEL...c.eiiii e e e 29
A1.2 NOt @ ONe-StOP PrOCESS......c.covviiiiiiiiiiiiiici s 29
A1.3 Quality i8S PeriSRabIe.......c.ceviuiiiiciiciriciricecc ettt 29
AT.4 INSULFICIENt RECOTASoeeiiiiiiiiic e e e e 29
A1.5 Statistically INValid Data........cccoiiiiiiiiiiicicccccecce e e e e nenen 29

A2.0 Seven Steps to Assessment.. 30
A2.1 Determine CritiCalITYccceiiuiiiiiiiiccccccccee e e e e nenen 30
A2.2 Determine INEEITACESc.ceiuimiiiiiiiiciccccccce e e e e nenen 30
A2.3 Evaliate HISTOTY....ooiiiiiiiicicccceeccceecccie e e e 30
A2.4 Evaluate CUrrent PrOZIAIM ..ot e e senenen 30
A2.5 Check fOr NeGative FACLOTS.......cc.ruiueiiueiiieiieeitie ettt ettt ese ettt ese st sscaesseaennes 30
A2.6 Evaluate Vendor COMMIIMENLESccccciiiiiiiiiiiiciicccceccee et 30
A2.7 Perform Periodic REVIEWS ..ottt 31

A3.0 Determine Criticality 31

A4.0 Determine Organizational Interfaces 31

A5.0 Evaluate Vendor HIStOTY ...ttt s sess st s sessssssesssssssssssssssssasesssens 32

A6.0 Evaluate Current Vendor PIrOZIam. ... iiiiciiictciiicsccnissscnssssessssssesssssesssssssssssssssssssssssssssssesssess 33
AB.1 OrganizZationcccciiiiiiiiiii s 33
AB.2 PIANS ...t ne b nenene 33
A6.3 Product REQUITEIMENLES........coiuiiiiiiiiiiiiiiiceeeeiccicee e e e nenenen 33
A4 e CY Tl e nene 34
A6.5 Verification & Validation ...t 34
A6.6 OpPOortUunity fOr AUILS.cocuiuiuiiiiiiiicccc e e e nenen 34

A7.0 Check for Negative Factors.. 35

A8.0 Evaluate Commitments 35

A9.0 Perform Periodic Reviews. .35

27

28

Vendor Assessment Process
A1.0 Introduction

This vendor assessment process is a proposed method for NRC reviewers to assess the capabilities and

products from software vendors who develop safety-critical applications for nuclear power plants. This
report, based on previous work [Ploof & Preckshot 1993, Preckshot 1993, Lawrence 1993], is intended to
be accompanied by the presentation vu-graphs in the Appendix, and provides explanatory text thereto.

The reviewer faces potentially insurmountable obstacles, which can be overcome if the reviewer
maintains realistic expectations of what can be accomplished. The following section defines five general
cautions and introduces a seven-step process for vendor review.

A1.1 No Silver Bullet

There is no single method or tool that can either certify a vendor to produce reliable and safe software
or verify that a particular software product is reliable or safe. The current state of the software art
requires that multiple factors be examined and taken into account.

A1.2 Not a One-Stop Process

Assessment of software vendors and their products is not a one-stop process. Not only is software
engineering a dynamic process, but the engineering and manufacture (e.g., programming) of a software
product takes place over an extended time. The reviewer should expect to examine a candidate vendor
at several points during software development.

A1.3 Quality is Perishable

Current ISO 9000 practice envisions re-certification at periodic intervals since organizations change
over time, sometimes for the worse. A reviewer should expect an assessment to remain current only as
long as personnel turnover, reorganizations, or financial pressures have insignificant effects.

A1.4 Insufficient Records

Insufficient records may be a hallmark of the software industry. The reviewer should expect that
documentation might be missing or was never generated.

A1l.5 Statistically Invalid Data

Performance claims based on anecdotal evidence are also a hallmark of the software industry. The
reviewer should be especially vigilant regarding skewed or optimistic data reporting.

29

A2.0 Seven Steps to Assessment

This section introduces a seven-step assessment process that addresses the five cautions. It is based on
previous work, as described above. The following sections present more detail on the reasons behind
each step.

A2.1 Determine Criticality

Maintaining a high-quality software process and proving this to regulators can be extensive. This
expense is unwarranted for software that has no safety impact; thus, the first step should be to
determine whether costly review efforts by both the regulator and the vendor are appropriate for the
products the vendor produces.

A2.2 Determine Interfaces

Interfaces between vendors, between subgroups within one company, or between hardware engineers
or scientists on one hand and software engineers on the other have typically been a big source of errors
and failures of software products. The important thing to remember is that interfaces are between
people; at the root of any misunderstanding are two or more people. The reviewer should make sure
that interfaces are identified, documented, and that conflicts are resolved.

A2.3 Evaluate History

Evaluate history to answer the question: “have you been doing what you say you will be doing?” A
software vendor with proven history of good practice is likely to continue. Conversely, promises are
easy to make but difficult to fulfill if they represent new practices. A reviewer evaluates a vendor’s
history to establish confidence in the vendor’s claims.

A2.4 Evaluate Current Program

Evaluate the vendor’s current software development program and plans for each product under review
for (1) appropriateness to the role the product will play and (2) consistency with the vendor’s past
practices. A significant and rapid change in practices is cause for concern, and has been called
“high-risk” by the participants in previous LLNL studies.

A25 Check for Negative Factors

Presentations and optimistic forecasts are easy to make. Check the vendor organization for indications
that accompany significant software development failures in the past. Often, vendor management may
not even be aware of these indications.

A2.6 Evaluate Vendor Commitments

The vendor should make appropriate commitments to standards and practices based on the safety role
each software product plays. The reviewer must decide if vendor historic practices, current plans, and

commitments make a convincing case that the vendor will produce (or has produced) safe and reliable
software.

30

A2.7 Perform Periodic Reviews

Subsequent to the initial evaluation, the reviewer will need to perform periodic reviews to ensure that
software quality does not perish, and that practices, plans, and standards to which the vendor has
committed are being followed.

A3.0 Determine Criticality

A previous document [Preckshot 1993], describes a categorization scheme based on IEC 1226.
Typically, two vectors need to be considered when determining software safety criticality: the safety
role the ultimate software product plays, and the relation the product under review has to the ultimate
product. The simplest example that illustrates the point is that of compilers. Compilers are not used
directly in a safety system, but their output may be. The theory of criticality categorization proposed in
Preckshot [1993] is that there are three relations the product under review can have to the ultimate
product:

1 The product is used directly in a safety application.

2 The product directly produces a product used as in 1.

3 The product helps produce a product used as in 1.
“Helps produce” means that there are intervening or other methods that assure the safety and
reliability of the ultimate product. The output of a software product as described in 2, above, has no

intervening method of assuring its output. For example, compilers that produce machine-executable
code to be used in safety applications.

In view of the relations proposed above, to complete the categorization scheme, it remains to determine
what safety role the ultimate product plays. In a precis of Preckshot [1993], these roles are:

* Essential to safety

e Important to safety (display)

e Important to safety (can challenge the protective system)

e Important to safety (diverse actuation)

e Related to safety (surveillance or support)
A4.0 Determine Organizational Interfaces

Organizational interfaces between a software vendor and the supplier of a nuclear steam supply
system (NSSS) can be complicated by the fact that the NSSS supplier and the software vendor are two
different companies. However, in the large organizations extant in today’s business world, this may be
a superfluous distinction; departments in a single business have sometimes been as separated as if they
were in different companies. Instead, it is probably more profitable to concentrate on areas where
historically there have been problems. A selection of six interface areas is listed below:

e System/hardware to software requirements translation

* Software requirements configuration management and change control
e System safety requirements change control

e Product configuration management and change control

¢ In-plant delivery and subsystem validation

e Full plant certification testing

31

These interface areas can be explored by asking “who” questions, where “who” could be a title rather
than an individual. Once the “who” is identified, the “what” and “how” can be determined.
Representative “who” questions are:

e Who does the system engineering?

* Who understands nuclear steam supply systems?

* Who understands software and computer architecture?

e Who apportions system safety requirements to software and other systems?

e Who identifies software interfaces?

e Who maintains software requirements under change control?

e Who feeds back the implications of software design decisions to system engineering?
e Who is responsible for software configuration management and change control?

e Who is responsible for delivery?

e Who is responsible for plant integration testing?

4

In most cases, identifying the “who’s” will lead to the organizational interfaces, or where the
organizational interfaces should be, but aren’t. In cases where an NSSS vendor is cooperating with a
software vendor, the “who’s” will involve persons in both organizations.

A5.0 Evaluate Vendor History

Evaluate vendor history to determine how past products have fared and whether the software vendor
has experience developing highly reliable, safety-critical software. The reviewer should look for
evidence of positive design factors and previous product successes that occurred because of good
planning and execution. A significant finding of vendor history exploration can be that there is no
history, or that documentation is so poor that the vendor cannot demonstrate past practices to any
reasonable extent. Following the design factors of a previous report, a reviewer should look for:

e Commitment to quality as shown by past pay and promotion policy
e Consistent and thorough documentation policy

e Records of previous products showing - software requirements documentation - design
documentation - Verification & Validation (V& V) - change control - interface documentation
and control - delivered product configuration control

¢ Employee training program

¢ Use of life-cycle models

e Software development process measurement

® Process improvement

e Use of risk-management techniques

¢ Adequate resource allocation

¢ Early problem detection

* Defect tracking, root-cause determination, and resolution
¢ Current software maintenance activity

* Previous product deliveries

e Team coordination

32

A6.0 Evaluate Current Vendor Program

Evaluate the current software development program to assure that it is appropriate to the safety impact
of the software the vendor proposes to develop or is developing. As previously mentioned, significant
inconsistencies with past performance are cause for concern. There are six areas to evaluate (if the
software project is in its early stages): organization, plans, software requirements, the use of a software
life-cycle model, V & V, and opportunities for future audits.

A6.1 Organization

The vendor’s organization structure should support the design factors discovered during historical
evaluation. The organizational aspects most often mentioned by standards, experts, and surveyed
software companies are independent of quality assurance functions (V & V, configuration
management, problem tracking) from software production functions. After independence of the main
units, the reviewer should look for organizational units responsible for employee improvement,
process measurement and improvement, documentation, product delivery, and software maintenance.

A6.2 Plans

There should be plans for developing the current product that describe who will do what, and when.
Lawrence [1993] §3.1 contains detailed suggestions for planning. A typical roster of plans covers the
following areas:

¢ Software development

e V&V

¢ Software quality assurance
¢ Training

¢ Configuration management
¢ Documentation

e Safety

Other plans are made as software design and development progresses:
¢ Unit test plans
¢ Integration test plans
e Installation and checkout plans

¢ Operation and maintenance plans

A6.3 Product Requirements

Over 50% of software errors are requirements errors. At a minimum, vague, incorrect, or incomplete
requirements have been implicated publicly in failures of software in operation and failure of a
development team to complete a satisfactory product.

During early or initial reviews, a regulator will have a significant positive impact on product quality by
demanding to see clear, complete, and unambiguous requirements for the product the vendor proposes
to develop. During subsequent reviews, stability of these requirements—and traceability of product
attributes to these requirements—are positive indications.

33

A6.4 Life Cycle

A product life-cycle model has become common in most engineering disciplines. Typical stages include
conception, design, implementation, integration and test, delivery, operation and maintenance, and
retirement. Most experts endorse a life-cycle model and applicable software standards because they
provide a framework for coordinating the many activities required to produce a modern software
product as well as milestones for measuring progress. The latter are directly important for the
reviewer; life cycle milestones signify both the completion of activities that must be audited and the
availability of auditable work products. Life cycle milestones should also be reasonably coordinated
with other participants in the NPP construction or retrofit.

A6.5 Verification & Validation

V & V work products will provide the reviewer with the primary assurance that a particular product
meets its requirements. The vendor’s software quality assurance program is responsible for since the V
& V plan is carried out, and that work products are produced. Anomalies discovered during V & V
activities are traced, root cause is determined, and resolved. The records of this activity give the
reviewer a direct visibility into the quality of the developing product. Consequently, the reviewer has
significant interest in V & V plans and the vendor’s current V & V program.

A6.6 Opportunity for Audits

An audit point has three important criteria:
e A reasonable, but not enormous, amount of work has been accomplished
¢ Viewable and consequential work products are available

e A significant milestone has been reached

For software products, these criteria are normally satisfied at the following times:
1. After requirements are done, but before design

At the completion of top-level design

At the completion of detailed design

At the completion of implementation

After system integration and validation

ORI R

After each delivery and plant installation
During preliminary assessment of the vendor, the reviewer should select audit points consistent with

the vendor’s life cycle, plans, and V & V activities. The above candidate times are suggested as starting
points.

34

A7.0 Check for Negative Factors

Even though a vendor may apparently have all appropriate organizational, historical, and planning
factors in place, a company is an organization of people, and there may be symptoms that historically
have accompanied software project failures. A selection of potential negative factors is listed below.
Any vendor may at times encounter one or more of these factors. Consideration should be given to the
preponderance of such factors, rather than concentrating on a single one.

e High personnel turnover

e Schedule-driven rather than quality-driven
e Short history

¢ Unstable requirements

¢ Grossly optimistic reliability claims

¢ Failure to meet predictions

¢ Failure to track defects and causes

¢ Underfunded efforts

* Hostile treatment of “whistle blowers”

A8.0 Evaluate Commitments

The vendor may make commitments to adhere to plans, to make work products available for review,
follow certain practices or standards, or meet interface requirements with other suppliers, clients, or
regulators. Commitments may be in the areas of:

* Quality assurance activities

* Use of certain standards or criteria

¢ Future configuration control

¢ Documentation

* Organizational interfaces

¢ Independence of certain quality assurance activities

* Process measurement and improvement

The reviewer should evaluate these commitments with regard to effect on future audits, legal design
criteria (i.e., 10CFR50 Appendix A), or endorsements in relevant publications (e.g., Reg Guides,
NUREGs, or Branch Technical Positions). No list of references is provided, since some of these
publications are presently undergoing review.

A9.0 Perform Periodic Reviews

The vendor should be audited at planned audit points to ensure that:
e No additional negative factors have arisen
e The vendor’s actual performance approximates planned performance
e The vendor adheres to commitments
* Essential design factors (as determined by historical evaluation) continue to be true
¢ Planned work products meet requirements

e Product design is appropriate to product role (product design factors)

35

36

Appendix B

Critical Assessment of
Software Design Factors

Manuscript date: October 15, 1993

Prepared by

F. W. Ploof and G. G. Preckshot
Lawrence Livermore National Laboratory
7000 East Avenue

Livermore, CA 94550

Prepared for
U.S. Nuclear Regulatory Commission

38

Abstract

This report is a critical assessment of collected design factors lists from FIN L-1867 Task 2 and Software
Engineering Institute (SEI) and the International Organization for Standardization (ISO) documents.
“Design factors” are those indicators associated with an organization or a product which are thought to
predict product reliability in a safety-critical application. The Task 2 design factors are individually
assessed and then compared in groups with the SEI/ISO factors. The factor groups are then reviewed
for applicability by the NRC.

39

40

APPENDIX B CONTENTS

B1.0 Introduction.... 45
B1.1 CONENtS Of the PAPET......cccuiuiiiciiciicieieicieictie ettt ettt sttt sscaenas 45
BL.2 SOUTCES ...t 45
B1.3 Data SOUICe Bi@SeS........cciuiiiiiiiiiiiiiiiic e 46
B1.4 Categories for “Design FACtOrS”ccoiiiiiiiiiieiciceeeeeeeeie e e e nenen 47

B2.0 Influences On FACtOr CROICES.......ouuviiiiirinininisiiiisiisiisisisssiisissssssssisses 48
B2.1 POINE Of VIBW ...t e e senenen 48
B2.2 OrganizZationcoccciiiiiiiiiiici e 50
B2.3 BUSINESScviuiiiiitiiiiit s r e a e 50

B3.0 Comparison of Design Factors. — |
BB3.1 SEI/ISO VETSUS TASK 2 .ot et e e et e e et e ee et eeee st eseeeseeeseaseeeseeseeeseeneenseeneenessseesaesneesaeeseenseessenneeasesneens 51
B3.2 Other Factors not in EIther LiSt.......cceeiiciieiiciicieecisicisecieneienetesesesese e ssesessese e sse s ssesessesesscsenns 55

B4.0 Assessment of Factor Utility for Regulation 55
B4.1 Essential Design FACLOTLScccoiiiiiiiiiiiiccct ettt 56
B4.2 Other DESIGN FACLOTS......cccueuiueiiieiriiciiiciricieicieieieeeie sttt tee s ese ettt sttt sttt sac e 58
B4.3 Product FACLOTScoiiiiiiiciccccccccee e e e e e 59
B4.4 Negative FaCtOrSccoiiiiiiiiiii s 59

Annex A—Design Factors.. 61

A.1.0 Part 1—Detailed Design Factors.... 61
AT General FACIOTS ...ttt 61
A.1.2 Process CONtIOL FACLOTS ..ottt ettt 63
A.1.3 Management FACOTS.........cccoviiiiiiiiiiiiii s 63
A 1.4 Personnel FACLOTScooiiiiiiiiiiicccccccc ettt 65
A1.5 DevelOpment FACLOTS...........ooiiiiiiiiiiictct ettt 65
A.1.6 Reliability and Safety FACLOTS ...ttt 68
A1.7 Negative FaCtOTS......ccviiiiiiiiiiic b 69
AL 1.8 Product FACLOTS.....c.ciiiiiiiiiicii e 71

A.2.0 Part 2—Manageria1/Technical VIBW auuueeeeiieinnreerecssssseeeecssssseesesssssssssesssssssssessessssssesssssssssessssssssssssssssssssssessssssnsnaes 72
A.2.1 Management Design FactOrs.........ccccociviiiiiiiiiiiiiiic s 72
A.2.2 Technical DESIGN FACLOTSc.ovcuiiueiiieiiieitieiticteeiseieie ettt ebe ettt sscaenseaenns 73

AL.3.0 Part 3—SEI/ISO FaCtOr LiSt....uuicreeiereeeeereeeeereieeesseesesssessessseessssssessssssessssssessssssessssssessssssesssssssssssssssssssssssessssssasnes 75
A.3.1 Management (IMIN)c.ccveeierrieierninieeeierseteeiesesseteeieseaeseaesessestsesesessestasaesssntssacsessentsssesessentassesssessaesesssens 75
A.3.2 SOFtWAre Life CFCle (SL)..ovuiuiererreiiieiririieeiereeieciesetreeeieseeeseeese st sessestasaesesseseaesessesesesesessestasaeseseseaesesssenns 75
A.3.3 SUPPOTHNG ACHVILES (SA)..cecviierriiiieriiriieieiiieeietretieie et tessestas et s e ese e ssestas e seaeaesenesnenns 76
J N T R @0} akaw-Yei 1o T 1 I (G 1) TSROSO 76

Annex B: Task 16A Vendor Assessment—Merged List of Factors... 77

41

42

Executive Summary

Design factors taken from FIN L-1867 Task 2 and from analyses of Software Engineering Institute (SEI)
and the International Organization for Standardization (ISO) documents are assessed and compared in
groups. The factor groups are then reviewed for applicability by the NRC based on the reputed effect of
each factor group, observability, and pertinence to NRC practices and procedures. The report
concludes that there are 15 significant process factor groups under these criteria, with two important
auxiliary groups (negative factors and product factors). Eight other factor groups were judged to be of
lesser effect, unobservable, or inappropriate to NRC practices. An important theme running through
almost all design factors is the length of time required for capability improvement, and for certification
that the principles described by the design factors are consistently and correctly applied. The sources
are unanimous: a quality software development organization cannot be assembled overnight.

43

44

Critical Assessment of
Software Design Factors

B1.0 Introduction

This report satisfies Part I, subpart (2) of FIN L-1867, Task 16, critical assessment of collected design
factors lists. “Design factors” are those indicators associated with an organization or a product which is
thought to predict product reliability in a safety-critical application. Several sets of such factors have
been collected in the course of this task and Task 2 of the referenced FIN, and this report reconciles and
assesses these factor lists in light of the NRC's regulatory mission.

B1.1 Contents of the Paper

This paper consists of four main sections and two appendices. The introduction describes the data
sources from which design factors were accumulated and makes some comments on source biases. It
also describes two categorization schemes (the design factors themselves are listed in Annex A). The
second section of the paper discusses considerations that may have influenced sources in their choices
of factors. The third section compares the SEI/ISO design factors with the Task 2 design factors. The
final section ranks and assesses factors for use by the NRC in view of its role and customary practices.
Annex A contains a listing and assessment of the Task 2 design factors. The SEI/ISO design factors
previously reported (Ploof & Preckshot 1993) are re-listed for the convenience of readers. Annex B
consists of the Task 2 and the SEI/ISO design factors compared in tabular form.

B1.2 Sources

As well as from subpart (1) of the current task (Ploof & Preckshot 1993), “design factors” have been
identified and collected from various sources as mentioned below.

B1.2.1 SEI

SEI, or the Software Engineering Institute, is a DOD-funded research organization at Carnegie Mellon
University that does research into characteristics that mark organizations that produce quality
software. The DOD's interest is in improving the quality of software produced by its contractors. SEI
has published a Capability Maturity Model (CMM) that postulates five levels of “maturity” in
software-producing organizations. Methods of determining these maturity levels have been proposed
and implemented and applied to a number of subject organizations. SEI currently does not address
specific application domains, specific software techniques, or personnel-related concerns (Paulk et al
1993).

B1.2.2 ISO (9000-Series Standards)

ISO (International Organization for Standardization) is a consensus standards organization of which
the United States, through the American National Standards Institute (ANS]I), is a participatory
member. ISO’s influence is primarily European and South American, but influence in the U.S. is
increasing. The ISO 9000 standards represent a consensus effort to provide quality standards by which
software customers, among whom are European governmental entities, may judge potential software
suppliers. ISO 9000-1 is a general quality assurance standard that is applicable to both hardware and

45

software production. ISO 9000-3 is a guide to applying the general requirements of ISO 9000-1 to
software products.

B1.2.3 IEEE

The Institute of Electrical and Electronic Engineers is an international professional organization with
significant influence in the United States. The IEEE has been very active in software as well as electrical
and electronic consensus standards, and is the largest presence in the U.S. in this area. The IEEE often
issues cooperative standards with ANSI.

B1.2.4 LLNL Task 2

Under the statement of work for Task 2 of the referenced FIN, Lawrence Livermore National
Laboratory (LLNL) conducted two kinds of data collection activities for finding design factors.

Experts Conference

A conference of four internationally known software safety experts was convened and conducted by
LLNL in San Diego, July 22-23, 1992. The conference report (Lawrence 1992) serves as a source of
design factors.

Visits to Developers

Visits to four companies involved in commercial software development of appropriate risk and
complexity were conducted by LLNL (Lawrence and Persons) during 1993. Trip reports and private
communications with Dr. Lawrence were used to develop additional design factors (Lawrence 1993a,
1993b, 1993¢, Persons 1993).

B1.3 Data Source Biases

Each of the data sources has biases that skew design factors towards the source’s economic, academic,
or philosophical interests. These are identified, as far as possible, below.

B1.3.1 SEI

SEI is primarily a research organization tied to an academic institution, and is conducting research
based on a theoretical model of the software development process and organizations that develop
software. SEI states that the work is oriented toward large organizations in aerospace or defense. The
major bias in the SEI work is that the Capability Maturity Model (CMM) has been postulated, but not
proven, to describe the software development process and the evolution that it undergoes as it is
“improved” (Humphrey 1988). The philosophy behind the CMM is that, like ordinary manufacturing
processes, the software development process can be measured and brought under statistical control.
The CMM views product attributes, application areas, and personnel matters indirectly as outcomes of
the software process. This results in an approach considerably different from traditional engineering
design review, in that the organization and the production process is reviewed, not the product design.
The theory is that a mature software development process will produce better software products. A
significant feature of the CMM is the state memory (the maturity level) within the model; the same
practice followed by two organizations at different maturity levels does not have the same import.

B1.3.2 ISO

ISO is an international consensus standards organization that produced the 9000-series standards for
quality assurance. 9000-series standards must be commercially practicable (a reasonable percentage of
software suppliers must be certifiable to gain consensus), so these standards are forged by agreement

46

between a wide range of quasi-governmental entities, software suppliers, and potential customers. The
field of application for the 9000-3 standard is general software development, usually controlled by
contractual agreements between a customer and a software developer or supplier. The theory of the
ISO standards is similar to the theory behind the CMM,; certificate of conformance with the ISO
standards is supposed to increase the customer’s confidence that a supplier will be able to fulfill
contractual terms because good practices and an orderly software development process are being
followed. There are significant differences between SEI and ISO, among which is that ISO has no
equivalent to the CMM and maturity levels.

B1.3.3 LLNL Task 2

LLNL Task 2 was biased from the outset with the presumption that a set of “design factors” existed
and could be determined. No other source makes this formal identification or uses this model, and the
state-free concept of design factors may be in direct contradiction to the state-memory concepts implied
by the CMM maturity levels. In any event, design factors as developed during LLNL Task 2 bear little
resemblance to traditional engineering design factors, which are almost always attributes of the design
itself, not the organization that performed the design.

The Experts

The four experts invited by LLNL represent four personal, although educated, views of software
reliability and safety in critical applications. Each participant was biased toward his or her study area
and experience, which can be determined by surveying his or her output of technical papers. None of
the experts specifically endorsed or used a “design factors” model, but use of mathematical probability
models and hazards analysis was a prevalent viewpoint. Each of the experts was a well-established
senior faculty member or senior person with a government agency. Risk was viewed as the perceived
probability of software failing and causing an unsafe condition or accident. One person in particular,
Littlewood, uses Bayesian a posteriori statistics to compute the effect of testing failures on a priori
perceptions of failure probability.

The Software Development Companies

Each of the companies visited has been successful in producing software under budget and schedule
constraints for applications of significant technical difficulty and safety impact. Three out of the four
developer organizations surveyed were large-scale aerospace or government contractors. Management
in each company is aware of the SEI CMM and endorses it to some extent, in one case wholeheartedly.
This resulted in views that focused on solution of each company’s particular software development
problems in each company’s business area with an SEI CMM flavor. Orientation was typically that of a
large commercial organization supplying software services or software-containing products to a
technically- or government-oriented market.

B1.3.4 IEEE

The IEEE is a consensus standards organization that has a history of endorsing, with minor changes,
defacto electronic standards championed by one or more financially interested businesses. Standards
committee members are unpaid volunteers and are usually limited by personal economic
considerations to company-supported representatives or academics. In our opinion, software standards
to date have been more influenced by academic participants than by commercial participants, perhaps
because no immediate economic consequences were foreseeable.

B1.4 Categories for “Design Factors”

As part of the process of assessing design factors, organizing them into categories is an aid to reasoning
about them. From the above sources, we accumulated a consolidated list of design factors under the
following headings (including added factors not addressed by the first four sources).

47

* General Factors

* Process Control Factors

* Management Factors

* Personnel Factors

* Development Factors

* Reliability and Safety Factors
¢ Negative Factors

* Product Factors

e Other Factors.
A full list of factors, including a one-paragraph explanation of each factor, is in Part 1 of Annex A.

The statement of work requires that factors be listed under the following two headings:
* Management Factors, and

e Technical Factors.

Factors are listed under these headings in Part 2 of Annex A.
B2.0 Influences on Factor Choices

In general, which design factors are considered important is influenced by point of view, organization,
and business. The “known biases” in sources have already been mentioned, but without an intellectual
framework relating the purported biases to facts observable about the sources. This section provides
such a framework.

B2.1 Point of View

The point of view of a commentator on design factors depends on objectives, knowledge, and position.
We identify five pertinent points of view in the data studied: the developer, the standards organization,
the customer, the academic, and the regulator.

B2.1.1 The Software Development Company

The developer’s objectives, as an organization, are to produce software for customers at the lowest
financial risk and greatest profit for resources expended, although not at the expense of losing future
business. The developer therefore has a utilitarian view of design factors. “Risk” for a developer means
failure to deliver or delivering an unprofitable product, which differs significantly from the viewpoint
of a regulator. Within a development organization we identify, again not exhaustively, three idealized
job functions that have somewhat different points of view: programmer/analysts, certifiers, and
managers.

The Programmer/Analyst
Programmer/analysts produce requirements, analyses, designs, and code, and are typically rewarded

for meeting scheduled production. They are intellectually rewarded by solving difficult problems. Risk,
for a programmer, is not delivering certified designs or code as promised.

48

The Certifier

Certifiers plan and perform analyses, tests, and certifications. Certifications that are produced on time
are generally viewed with approval, but failure to certify designs or code is antithetical to the interests
of both programmers and management, and is the main reason for requiring independence of testing,
validation and verification (V&V), and quality assurance activity from production activity. A certifier’s
view of risk can vary, depending upon external pressures. In organizations in which certifiers are not
insulated from producers, the risk may be in failing to deliver certification. In more independent
circumstances, risk is viewed as certifying something that has hidden flaws.

The Manager

Management produces plans to allocate resources sufficient to meet scheduled business objectives, and
monitors and controls work to ensure that objectives are met fully and on time. Management is
rewarded for achieving objectives as scheduled or sooner at the least possible cost. A manager views
risk in terms of not meeting planned objectives on time, or exceeding budget.

B2.1.2 The Standards Organization

Most standards organizations produce standards by consensus between participants selected from
government, industry, and academia. These standards compete in an arena that requires general
applicability and visible evidence that a standard is being met. There may be additional bias due to the
industry group the standards organization serves; for instance, SEI is primarily targeted at large
defense contractors. The view of the standards organization is one of conflict resolution, with the
objective of getting agreement on a workable technical standard among interested parties. In general,
any successful standard is a compromise. The standards organization views risk as failing to achieve
consensus.

B2.1.3 The Customer

The customer for software products is generally, but not always, less sophisticated than the software
developer in matters concerning software. The customer’s objectives are to obtain a software product
that fulfills the customer’s needs at reasonable cost and prompt delivery. Customers view risk as
schedule delays, cost overruns, and inadequate or “buggy” products. An often unperceived risk (by
both customers and developers) is that customer needs do not always translate accurately to software
requirements.

B2.1.4 The Academic

Academic objectives are varied and depend upon the research field and interests of a particular person.
Depending upon seniority and tenure, academics can be influenced by career risk, effects on
reputation, or ability to attract and retain consulting contracts. Persons in more secure positions tend to
be more independent, but even untenured junior faculty members are usually ethical and attempt to
take unbiased views dependent strictly on technical merit. A common complaint among the non-
academic engineering profession does not regard ethics at all: academics are sometimes viewed as
having little practical experience and as being too theoretical.

B2.1.5 The Regulator

The objectives of regulators such as the NRC are to prevent practices that may lead to unacceptable
consequences, such as public exposure to radiation. Software is only one of many components whose
failure may lead to such consequences, and the regulator is concerned in the end that the system shall
not fail, even if individual components do. The regulator views risk, therefore, in a system context, and
this viewpoint is more compatible with the academic viewpoint than the developer’s viewpoint.

49

Regulators also balance risk assessments against national priorities and legal mandates, rather than
commercial return.

B2.2 Organization

Organization affects design factor perceptions by organizational size, purpose, and customs.

B2.2.1 Size

Size of an organization affects resources available, speed of response, and internal communications.
Generally, larger organizations have more resources, slower speed of response, and more levels
through which internal communication must pass.

Suborganizations

A particular effect of size is that there may be several software-producing suborganizations within a
large organization, and each may differ in local purpose and customs, often significantly enough to
affect software quality. The position of a suborganization within a parent organization often has
significant effects on resource allocation and status.

B2.2.2 Purpose

Organizational or suborganizational purpose may govern the importance of software development
methods and management. For instance, an aerospace company may raise software management to
high levels of importance because software safety is of prime importance to legal liability and company
products. A utility may have a programming department that competes for resources with other
maintenance departments because upper management perceives only a weak connection between
power production and software maintenance.

B2.2.3 Customs

Organizational customs govern both the general environment in which a software suborganization
must function, and particular software development methods that are favored. In consumer software
development companies, it is usually customary to schedule product releases based on market
conditions and acts of competitors. This leads to schedule-driven development with requirements set
by market research, not always a stable oracle. One noted consumer software developer has a corporate
culture based on the irregular and workaholic work habits of its Chief Executive Officer (CEO), and
experiences high staff turnover as a result. The space shuttle flight software prime contractor has a
more deliberate and structured corporate culture and experiences low staff turnover.

B2.3 Business

The business a company or organization is in can affect the relative importance of certain design factors
because of wide variation in the level of software reliability required to compete in the business sector.

B2.3.1 Commercial Software

Products produced for the commercial (e.g., business or consumer) market generally require only
enough reliability so that customer gripes remain at a manageable level. It is customary practice in this
business sector to release buggy products because the earliest product out will usually acquire the
largest market share. High-reliability design techniques are not important to this sector.

50

B2.3.2 Commercial Development for Hire

Commercial development is done by software consultants working under contract and has a varied
history. The genesis of both the SEI maturity rating system and the ISO 9000 standards has been the
unpredictable quality coming from such consultants or software development companies. Importance
of high-reliability design factors may depend upon previous contracts.

B2.3.3 Peripherally Involved

A peripherally involved business is one that uses software, but does little development of it. This
would include some electric utilities, some service organizations, some manufacturers, and similar
businesses. These businesses are customers for software products and may be unaware of the
importance of any software design factors.

B2.3.4 Industrial Process Control

Suppliers of industrial process control systems and software-containing components such as
Programmable Logic Controllers (PLCs) must supply at least moderately reliable equipment for real-
time control. Major players in this business regard reliability design factors as important.

B2.3.5 High-Risk Technical

Most organizations in aerospace or other high-risk technical businesses are well-acquainted with high-
reliability software development methods and design factors. However, some high-risk businesses,
such as medical equipment manufacturers, have had public failures that demonstrated ignorance of
even rudimentary good practice (Leveson & Turner 1993).

B3.0 Comparison of Design Factors

The design factors listed in parts 1 and 3 of Annex A were grouped in comparison groups in the table
of Annex B. In the following, the factors in each group are assessed as to why they were proposed and
what influences may have prompted the various sources to propose them or ignore them. Then, factors
from other sources not present on either list are discussed.

B3.1 SEI/ISO versus Task 2

In general, factors gleaned from the two standards organizations! were more general, and favored
criteria that provided visible evidence that required attributes were present. Developer organizations
were more concerned with day-to-day utilitarian factors that affected product output. The Task 2
experts took good software methods as a given, and were more directed toward risk estimation and
hazards analyses.

B3.1.1 Quality Commitment Group

A commitment to quality by management, or alternatively everybody, is regarded as necessary to
produce good software. Developer organizations had more specific, practical applications of the quality
commitment principle, of which the most significant is probably that the organizational reward
structure must match the quality commitment.

1SEI is viewed here as a defacto standards organization.

51

B3.1.2 Policy and Documentation Group

The standards organizations concentrated on documentation as a means of demonstrating that policies,
plans, organizational structure, and product are defined and under management control. The
developer view was more utilitarian and was directed toward (apparently) deliverable product
documentation and documentation necessary for internal control. The developers specifically
mentioned software interfaces as items requiring documentation and control, and their view is
repeated by both ISO and SEI documents.

B3.1.3 Personnel Qualifications Group

Personnel qualification was not directly addressed by SEI, and in fact was excluded by Paulk (Paulk et
al 1993). ISO 9000 has several requirements for “qualified” personnel and for personnel training, which
can reasonably be interpreted to mean personnel of high intellectual capability. The developer’s
viewpoint reflected the prevalent literature view that the single most important factor in producing
quality software is the intellectual capability of the persons producing it. From the emphasis by
developers, finding high-quality software development personnel continues to be a priority.

B3.1.4 Independence Group

The deleterious effect of having certifiers under control of the same management responsible for
product development appears well known to all parties. There are no significant differences on this
point.

B3.1.5 Independent Review Group

Independent review is regarded as useful, although probably for different reasons. ISO, in particular,
makes certification by independent agencies a part of the ISO 9000 process. Developers were more
concerned with calibration of management perceptions against outside viewpoints.

B3.1.6 Resource Group

The standards organizations require that appropriate resources and training should be provided to
personnel for certification or higher maturity levels. None of the developers or the Task 2 experts
mentioned this point, possibly because they thought it was obvious. This speculation would be less
appropriate with organizations of lesser resources and reputations.

B3.1.7 Team Coordination Group

The issue of large team or intergroup coordination was addressed directly by SEI and ISO, and
idiosyncratically by developers. The developers are aware of the problems of managing large teams,
but their specific comments addressed only narrow issues because of the focus of the developer
interviews.

B3.1.8 Process Improvement Group

Process improvement is a major part of the SEI Capability Maturity Model and so is addressed
extensively by that organization. ISO has only recently begun action on process assessment with the
Spice Project (ISO 1993), and the maturity states inherent in the SEI model still represent a significant
difference between SEI and ISO. However, ISO favors process improvement and requires periodic
assessment for process improvement purposes. Among the Task 2 factors, a majority of detailed
individual process improvement factors were due to one developer that is rated at SEI maturity level 5,
although other developers contributed two factors. Other than the state assumptions of the CMM, there
are no significant disagreements on this factor group.

52

B3.1.9 Process Measurement Group

As part of the process improvement process, a measurement program is required by SEI. The SEI
maturity-level-5 developer contributed design factors from its practices of process measurement and
stabilization. This level of detail and specificity is unique to this organization, although the advice
given in the statement of the design factors appears reasonable. ISO has a considerably less-developed
approach to process measurement, and, although such activities are not ruled out by ISO 9000
standards, they are also not required in detail. A data base for process metrics is required, but with few
exceptions, ISO 9000-3 does not spell out what measurements must be made.

B3.1.10 Development Risk Group

ISO and SEI require that management estimate work effort and correct the effects of mis-estimation,
which is essentially the management of development risk. The Task 2 experts did not address
development risk. The software developers were directly concerned with development risk, although
their primary concern may have been more for commercial viability than conformance with standards.
Regardless, it will still be appropriate for regulators to review development risk performance of
software developers under their regulatory purview because poorly managed risk means that “non-
essentials,” such as quality, are sacrificed to expediency.

B3.1.11 Life Cycle Group

Although there were differences in detail, there is no disagreement on the utility or the necessity of
using an appropriate life cycle model as a framework for development and quality management
activities.

B3.1.12 Requirements Group

There is no disagreement regarding the importance of clear, stable, and validated requirements. All
parties regard such requirements as crucial to software quality.

B3.1.13 Development Attribute Group

The standards organizations describe the necessary attributes of software designs and development.
The developers evidently did not comment because they believed that their designs and methods
possessed these attributes. This speculation would be less appropriate with organizations of lesser
resources and reputations.

B3.1.14 V&V Group

The standards organizations require that software be independently tested and validated. Developers
offered detailed advice regarding types of testing, V&V planning, and product design for V&V.
Independence is covered in the independence group. There is no significant disagreement.

B3.1.15 Product Delivery Group

ISO, being particularly oriented toward commercial or consultant software development, had
requirements for reliable delivery of product. The product delivery process was addressed at length by
the SEI level 5 developer, which has an extensive and lengthy procedure for ensuring accurate and
controlled product delivery. One other developer, a contract consulting firm, also has explicit delivery
procedures. The other two developers did not comment.

53

B3.1.16 Software Maintenance Group

As with product delivery, ISO considered the maintenance phase after software delivery as a
responsibility of ISO-9000 certified developers. No other source considered software maintenance
explicitly.

B3.1.17 Configuration Management Group

There was no disagreement on the need for or importance of configuration management. It is regarded
as crucial. One configuration management subject was consistently and particularly required: change
control.

B3.1.18 Tools Group

The use of tools is considered a positive factor, but few specific recommendations were given by any
source. Reviews, walkthroughs, and inspections were recommended. Prototyping and simulation were
recommended.

B3.1.19 COTS Group

Certification of commercial off-the shelf software (COTS) products used in development is considered
a positive factor by the standards organization. The details of COTS certification, however, are still
subjects of controversy. An inadequately done certification may be a negative factor because it results
in unwarranted confidence in a COTS product.

B3.1.20 Contracts Group

The ISO 9000 certification process is constructed for software developers offering services for hire to
interested clients. The standards contain certain provisions with respect to contractual performance
that have little to do with product quality, except for contractual agreements to clarify software
requirements. This is redundant considering the requirements group discussed above. SEI also has
provisions for subcontractor management that would be typical of a large defense prime contractor.
These provisions require that the prime contractor ensure that the subcontractor meets the same quality
assurance criteria that the prime contractor is required to meet.

B3.1.21 Miscellaneous Opinions Group

Miscellaneous opinions relate to a particular source’s business situation and are judged to be too
narrow to be used as general design factors. Whether the particular opinions expressed in this group
are significant design factors is open to debate. One of the opinions describes a characteristic
(adaptability) of an SEI maturity level 5 organization, but in isolation. This characteristic would appear
to have little meaning outside the CMM.

B3.1.22 Early Problem Detection Group

Early problem detection is the early identification or detection of critical components, errors, or
complex designs so that these problems can be addressed while the cost of solving them is still small.
This is a specific development technique favored by cost-conscious managers that is not directly
addressed by SEI or ISO except under risk management. Consequently, neither SEI or ISO include this
specific item in their requirements, while some developers regard this as a very significant process
factor.

54

B3.1.23 Defect Tracking Group

There is no significant difference on defect tracking, but the reasons for it may vary between standards
organizations and developers. The standards organizations favor product review and corrective action
plans as a systematic way of recording and improving product quality and the development process,
while the developers additionally intend to reduce business costs by not making the same mistake
twice.

B3.1.24 Reliability Practices Group

Neither the standards organizations or the developers contributed much to this group; these individual
factors were provided almost exclusively by the four experts at the San Diego meeting. The reason for
this is probably that the reliability advice is either too specific or too controversial at this time to be
addressed by general standards or to achieve consensus. Nonetheless, for the relatively small field of
ultra-high reliability, these factors are significant.

B3.1.25 Negative Factors Group

Negative factors were proposed exclusively by the developers surveyed and probably represent
specific bad experiences. It is not customary for standards to list bad practices, but usually good or
preferred practices, so that it is no surprise that there was no standards organization participation in
this group. For a regulator reviewing a potential software participant in a nuclear reactor, negative
factors will be useful.

B3.2 Other Factors not in Either List

With the exception of the reliability practices group, the design factors extracted from SEI and ISO
publications and those taken from Task 2 are primarily “process” factors. That is, they apply to
organizational or management practices with the underlying assumption that a software organization
meeting the factor criteria will produce quality software. Strictly speaking, these are not “design
factors,” since they are not directly associated with the design of a particular product. A small set of
design factors that can be associated with a particular product were identified.

B3.2.1 Product Factors Group

The design factors in this group were taken from MoD (1991) and Preckshot (1993). When present, they
indicate that extremely simple design practices are being used. This is generally regarded as positive
for ultra-reliable software.

B4.0 Assessment of Factor Utility for Regulation

The design factor groups as assessed above were reviewed for their utility to the NRC and ranked in
two groups, with comments, below. Refer to Annex A for details on Task 2 factors or the factor lists.
Rankings within the essential group should be viewed as approximate, since all the essential design
factors should be present. The design factors are stated for ultra-reliable software, where it is assumed
that the highest quality software is to be developed. Product factors are listed separately and should be
applied on a per-product basis. Negative factors are listed separately and should be used as a
consistency check by NRC reviewers.

The criteria used to rank factors were the reputed effect of each factor, observability, and pertinence to
NRC practices and procedures. Under the heading of reputed effect, factors were reviewed for effect on
“quality” and connection to safety requirements. Quality, unfortunately, is a slippery term that
sometimes means “meeting contractual requirements,” “meeting software requirements,” or rarely,
“solving the system safety problem.” Factors that are observable either through documentation

55

inspection, limited company review, or product inspection were favored. Factors that could be
discovered by the NRC practices of periodic, scheduled, or milestone inspections, either by NRC
personnel or contracted, independent reviewers, were also favored.

B4.1 Essential Design Factors

1. Quality Commitment

A commitment to quality is the most important factor. The organization’s reward structure should
match the quality commitment claim and should have a relatively long history demonstrated by
documentation.

2. Policy and Documentation

From a regulatory viewpoint, clearly defined and stated management policy and a well-managed and
complete documentation activity are the only ways the NRC can obtain reliable visibility into other
design factors. The organizational record should show a number of years of successful practice under
stable policy.

3. Configuration Management

Configuration management is crucial and is absolutely necessary to have confidence that the correct
product is built, and that change occurs in an orderly way. Configuration errors are among the simplest
and also the most prevalent made in the software industry. Adequate configuration management can
be demonstrated by review of past and current company practices. Three configuration management
functions of particular note should always be present: change control, interface documentation and
control, and delivered product configuration control.

4. Personnel Qualifications

Although this will be a controversial subject, personnel quality continues to be the single most
important factor in the designing and coding of a software product. The controversy is not whether
intellectual capability is a good thing, but rather who should determine it and how it should be
determined. A distinction should be made between managerial ability and technical ability. They are
different and often do not occur simultaneously in the same person. Review of personnel qualifications
is still a subject of NRC inquiry, but is so important that it cannot be omitted from this list.

5. Independence

V&V, testing, configuration management, and product certification should at least be independent of
the managers and programmers responsible for developing the product, and V&V preferably should be
done by a different company entirely. Independence can be demonstrated by review of a company’s
management structure and reward system.

6. Life Cycle

The organization should have a very clear picture of, and a formal model for, the life cycle of its
products. This should be clearly reflected as the temporal glue that binds all development and
certification activities into an orderly sequence. The use of a life cycle model will be clear from review
of development plans.

7. Process Improvement

Management should have a clear picture of the development process and should be prosecuting
continuous improvement efforts. This should be demonstrated by a reasonably long (several years)

56

documented history of this activity. Other checkpoints are development and use of documented
internal or external (e.g., national) standards, and use of process models.

8. Process Measurement

Management should be measuring the results of the software process and management’s own
performance. Without a measurement record, claims of process improvement cannot be substantiated.
The database of measurement results is evidence of process and product measurement.

9. Reliability Practices

For ultra-reliable safety software, requirements, development techniques, V&V rigor, and product
factors should be guided by the results of hazards and risk analyses. The consistent use of reliability
practices can be seen in the documentation of analyses used for planning development, V&V, and
designs for prior safety-related products.

10. Requirements

The software development process should produce clear, stable, and validated requirements. Company
practices, plans, and example requirements from prior safety-related products provide evidence that
clear, stable, and validated requirements are the norm. Positive findings include documented
requirements analyses, requirements stability control using configuration management, and the use of
prototyping or simulation to understand the implications of requirements more fully.

11. Development Attributes

The software development process should produce clear, unambiguous, documented designs that are
traceable item-by-item to requirements. There should be a systematic process for producing software
products that are traceable item-by-item to designs. This is demonstrated by documented software
development process models, which describe the systematic procedures and attributes of the software
development process. The models may be validated by process measurement, as noted in item 8 above.

12. V&V

V&V activities should independently confirm requirements and development attributes and individual
product quality. V&V leaves a significant trail of documentation, which can be inspected for prior
safety-related projects. Significant positive findings include multi-level testing (e.g., unit, subsystem,
and system), and products that are designed to facilitate V&V.

13. Resources

The level of resources and training assigned by management should be appropriate for the difficulty of
the software tasks. Resource allocation is documented by management plans and histories of plan
execution. Training is documented by personnel assignment records.

14. Development Risks

Management's ability to assess development risk and history of on-time, on-budget, within-
specification deliveries is a significant indicator of probable quality. Managerial performance is

documented by plans and results for previous safety-related projects similar in scope and nature to
current work or future work under the purview of the NRC.

57

15. Early Problem Detection

The practice of early problem detection and resolution is a positive indicator of eventual product
quality and can be demonstrated by documenting detected software errors systematically.

16. Defect Tracking

Defect tracking, root-cause determination, and correction of both the product and the process are
positive indicators of process improvement, if the defect-tracking activity is done with due regard for
statistical validity. Documentation of this activity provides a record of organizational performance.

B4.2 Other Design Factors

1. Independent Review

Independent review of a software organization, such as ISO 9000 certification, is useful but probably
not sufficient for NRC purposes without employing additional criteria.

2. Team Coordination

The design of reactor protection software is not a large software task and should not require large
teams to accomplish. If it does, this may be a negative factor because the design may be larger and
more complex than necessary. Without explicit management efforts, team coordination may still occur
informally, but will not be documented.

3. Product Delivery

The NRC’s current requirements for QA inspection (10CFR50) or ITAAC (10CFR52 Part B) are probably
sufficient if interpreted to require validation in-plant.

4. Software Maintenance

Software maintenance is not currently an NRC concern for design certification or new-plant delivery.
The planning and provision of appropriate software maintenance probably should be.

5. Tools

The use of tools during the development process is considered a positive factor, but the extent and type
of usage varies so widely in the industry that no ranking or level of importance useful to the NRC can
be ascribed. The software tools market is also so volatile that regulatory requirements tied to particular
products would be out of date within six months.

6. COTS

Certification of COTS software, including as used or provided by software developers under scrutiny
by the NRC, will be considered in an upcoming report.

7. Contracts
The contractual requirements of ISO 9000 are irrelevant to NRC purposes. Subcontractor requirements
of the SEI approach may be necessary, but insufficient, since to depend upon a prime contractor

(reactor vendor) to oversee a subcontractor’s software development process may be an abdication of
NRC responsibility.

58

8. Miscellaneous Opinions

The miscellaneous opinions offered by the developers surveyed in Task 2 are irrelevant to NRC
purposes because they are situational and have no general applicability.

B4.3 Product Factors

Product factors for ultra-reliable reactor safety software are listed below. When present, they indicate
that extremely simple design practices are being used, which is a positive factor for ultra-reliable
software. Product factors can be ranked in terms of increasing complexity and risk, but the ranking
scheme can be circumvented by combining riskier design practices in innovative ways. An unfortunate
drawback to product factors is that reviewers reasonably skilled in software development are required
to do product review. Product factors include:

e Simple loop

¢ No interrupts

* Deterministic, predictable timing
e Strong data typing

* No pointers

* No multi-tasking.

B4.4 Negative Factors

The negative factors listed in this group would provide a consistency check against other claims and
information provided by a developer seeking NRC approval. Most of these factors have been reported
in the general computer science literature as distinguishing software project failures. For instance,
requirements instability, schedule-driven development, and repeated failures to achieve predicted cost,
schedule, and product quality are hallmarks of several large and costly failures. Negative factors
should be regarded as cause for much more intense scrutiny. For convenience, those factors are
repeated below:

e There is high turnover.

* Projects are schedule-driven, rather than quality-driven.
e Organizational process history is short or lacking.

* Management cannot enforce stable requirements.

e Management’s estimates of product reliability greatly exceed what is actually measurable or
provable.

e Management has a record of failing to meet predicted cost, schedule, and quality goals for
products.

e The organization fails to track errors and causes.
e The development effort is underfunded.

e The organization exhibits “kill the messenger” syndrome.

59

60

Annex A—Design Factors

A.1.0 Part 1—Detailed Design Factors

Design factors are organized under nine headings and are described in one-paragraph appraisals
below. The rationale for each heading is described in a single paragraph following the heading. Each
design factor description gives the justification for the design factor and notes restrictions where
appropriate. The design factors listed are taken from sources and are not the work of the authors. The
arrangement, headings, and descriptions represent the opinions or work of the authors.

A.1.1 General Factors

These are factors that apply generally to all members of an organization in all phases of a software
development cycle.

A.1.1.1 All levels of the organization are committed to quality.

Since software quality is, like a chain, as strong only as the weakest link, all members of a software
development organization must be committed to making quality happen. Management commitment is
particularly important because management controls the resources allocated to quality assurance
activities.

A.1.1.2 There is longevity in personnel, policy, and process.

The process of building a quality software development organization takes time, by some accounts two
years for each incremental improvement in SEI maturity level (Paulk 1993). Therefore, personnel,
policies, and the development process must exist and be under improvement for a relatively long
period of time. Data on product performance and software process must also be collected for
significant periods of time to be statistically valid.

A.1.1.3 Configuration management is used extensively.

Configuration management was cited by all respondents as being crucial to any scheme of product or
process control, irrespective of any other software method or process model. Without effective
configuration management, it is impossible to determine what has been delivered, how it was
produced, who made it, and whether it met requirements.

A.1.1.4 Testing, V&V, and SQA are independent.

Independence of testing, validation and verification, and quality assurance activities from development
activities that are under schedule and budget pressure is necessary to prevent compromise of quality
for expediency.

61

A.1.1.5 An appropriate life cycle model is used.

The discipline of using a life cycle model is more important than the actual details of the model
selected. A life cycle model allows the various related activities of software development and quality
assurance to be coordinated in a rational progression.

A.1.1.6 There is continuous process improvement.

No software development process is perfect, and a good process will degrade without continuous
attention. Improvement was a general watchword regardless of actual process details.

A.1.1.7 Reviews, walkthroughs, and inspections are used.

Reviews, walkthroughs, and inspections were recommended at all stages of development and for all
products, including V&V and quality assurance products. Code inspections and walkthroughs are
credited by one respondent with finding 85% of errors prior even to testing.

A.1.1.8 Automation is used where appropriate.

Automation is suggested for all activities that are tedious, repetitive, error-prone, and sufficiently well-
defined that automated software tools can be written to accomplish them. This allows human effort to
be redirected to areas where the human intellect is superior to machine performance. Automation may
also permit enforcement of standards and customs.

A.1.1.9 Vendors, products, and services are certified.

Products and services used in the development process should be certified to the level required to
support the product(s) being developed.

A.1.1.10 Software is the company’s primary business.

The company, or division responsible for software, should be in the software development business
directly, not as a peripheral activity to the company’s real business. This ensures that software concerns
and software expertise are sufficiently high in the company’s business plans that they receive adequate
attention and resources.

A.1.1.11 The organization adapts to changing environments.

The computer industry, and particularly the software industry, has undergone rapid change during its
entire existence. Software development organizations and their software development process must
continue to adapt to this changing environment, both because old methods used in new situations may
be inappropriate, and because the tools and equipment available may force the change.

A.1.1.12 The organizational goal is defect-free software.

Even though achieving this goal may be impossible, no safety-critical software developer should aim to
have defects. The defect-free goal and the resources devoted to it are evidence of commitment to
quality.

62

A.1.1.13 Quality must be built in; testing cannot find all defects.

It is not possible to “test in quality.” Quality must be designed into the product and that fact should be
demonstrated by testing, V&V, and quality assurance activities. Quality, in this definition, means
adherence to requirements.

A.1.2 Process Control Factors

These are factors that apply specifically to controlling or measuring the software development process.

A.1.2.1 Processes are defined.

The software development process should be defined in detail so that practitioners can judge whether
or not they are accomplishing development according to the process model.

A.1.2.2 Process is stabilized by measurement and feedback.

Performance of actual development activities is measured and compared with the defined process
model. If discrepancies exist, either development activities are redirected or the model is changed until
a stable, well-understood development process is achieved.

A.1.2.3 The number of process variants is reduced by standardization.

An organization should settle on one or a few process models to guide their development activities,
depending upon purpose and business. For instance, a spiral life cycle model with repeated prototypes
might be used for products whose requirements are inexactly known but whose failure consequences
are low. A waterfall life cycle model might be used for products whose requirements are well known,
but whose performance requirements are strict and whose failure consequences are severe. Limiting
the number of process variants makes sense because scarce resources can be applied more effectively to
process improvement.

A.1.2.4 Processes are improved only after they are stabilized.

Hitting a moving target is always more difficult than hitting a stationary target. Development processes
should be stabilized and measurements made so that the effect of changes can be determined and
adjustments made in additional change efforts. Two developer organizations suggest that changes to
process should be made one at a time, allowing time for stabilization and measurement before making
additional changes. This is one contributor to the longevity factor (see section A.1.1.2).

A.1.2.5 Data collection and use of data is balanced.

The amount of data collected should be appropriate to the use of it. Collecting data that will not be
used (including usage later in historical databases) wastes effort. Making decisions with inadequate
data is just guessing. Data should be collected for historical databases as part of building a long-term
process or product history, but not to the extent that it overwhelms short-term data usage activity.

A.1.3 Management Factors

These are factors that are primarily the responsibility of management to implement or enforce.

63

A.1.3.1 The reward structure matches the quality commitment.

If management gives lip service to quality, but rewards for other performance, other performance is
what will be achieved.

A.1.3.2 Management uses process models.

While all persons involved in the software development effort benefit from understanding the process
models in use, management’s ability to control development processes by allocation of resources and
effort is greatly enhanced by using process models.

A.1.3.3 There is constant process measurement and improvement effort.

Software development is a perishable process. Quality can only be maintained by constant
measurement and improvement effort. Management’s responsibility is to see that this effort is
expended, even though it does not contribute immediately to a product.

A.1.3.4 Management makes predictions using models.

Control of process is only achieved by predicting what effect proposed actions will have, and
modifying actions to have the desired effect. Management should use model predictions as a first cut at
determining what the effect of management actions will be. The use of models predictions and
subsequent measurement is essentially feedback control, with the model predictions providing a
feedforward component. In the language of control systems, the measurement lag would make an
extremely sluggish system or an unstable one without the anticipation provided by predictions.

A.1.3.5 Management achieves predicted cost, schedule, and quality goals more often than not.

It is important that management have a track record of planning, allocating resources, and meeting
schedules within cost and quality constraints because the first thing to go under schedule and cost
pressures is usually quality.

A.1.3.6 Management controls risks by adopting appropriate strategies.

In the commercial software development world, risk is perceived as failing to deliver a minimally
acceptable product on time and more or less within budget. Management uses such strategies as
“descoping” (delivering less), delivering with bugs, or renegotiating schedules, depending upon
contractual provisions (if any) and commercial conditions. Delivering buggy software is a strategy
often used by commercial software vendors trying to hit a market window, although it is greatly
disliked by customers.

A.1.3.7 Management abandons methods that do not work.

This may seem like an obvious thing to do, but abandoning a work practice is often a serious career risk
for a manager because it is viewed as an admission of error. Mature management expects some
percentage of methods attempted to perform relatively poorly, and plans to acquire data about method
performance with a view to discontinuing those that do not work well (see item A.1.7.9).

A.1.3.8 Management ensures planning, production, and control of documentation.

Accurate and complete documentation is necessary for product maintenance as well as data collection
about organizational performance. Documentation is one of the first things to be neglected under
stress, and serves as a sensitive indicator of management performance. Documentation also serves as a

64

record of organizational longevity and history, validating claims of sufficient experience to be
considered at one of the higher SEI maturity levels.

A.1.3.9 Management invites external review.

Nobody is objective about themselves.

A.1.3.10 Improvement takes time — an average of two years.

Respondents were unanimous in noting that no quality software development organization can be put
together overnight. Empirically, it appears that about two years are required for the average software
organization to move up one rank in the SEI maturity scale.

A.1.4 Personnel Factors

These are factors that characterize the personnel involved in the software development process.

A.1.4.1 Programming skill is not enough; some personnel must be skilled in the problem
domain.

When software is applied to problems whose solution has a significant non-software component, as
would occur in reactor protection systems, aerospace control systems, or the like, programmers who
have no knowledge in the application field are prone to make mistakes of ignorance. In the highly
specialized space shuttle program, for example, there is close cooperation between engineers and
scientists who are cognizant of astronautics and shuttle systems, and programmers.

A.1.4.2 High intellectual ability of staff is crucial to success.

Most writers in the software development field note that the single greatest factor in assuring quality
software is staff quality. A distinction should be made between managerial ability and technical ability.
Often, an individual may be adept in only one area.

A.1.4.3 Inaccurate interpersonal communications are an obstacle to producing high-reliability
software.

The large organizations in the LLNL survey noted that as software teams get larger, efficient inter-
team-member communications become more important, and sometimes become a bottleneck. The
corollary of this point is that small teams are preferred.

A.1.4.4 Personnel in influential positions should be highly skilled in all aspects of the
development of high-reliability software.

Developing high-reliability software is a special skill that is learned, not inherent. Persons with average
schooling or experience cannot be expected to do this and should not be in positions where their
inexperience can affect the development process.

A.1.5 Development Factors

These are factors specifically related to the software development process.

65

A.1.5.1 Configuration management, V&V, and SQA are coordinated with development
activities.

This reflects the fact that in an orderly software development process, certain products subject to V&V
and SQA are available at process milestones. V&V and SQA products are produced from development
products and lose their effectiveness if not fed back into the development process in a timely way.

A.1.5.2 Requirements are stable.

One of the major markers of failed software development efforts is unclear and constantly changing
requirements. Stable requirements are crucial to success.

A.1.5.3 A requirements analysis is performed.

Having stable requirements is merely the first step. Requirements must be analyzed to understand
their implications. Analysis often reveals inconsistencies, unneeded but expensive specifications, or
requirements that may be extremely difficult or impossible to fulfill. Analysis is also necessary when
converting requirements provided by non-software specialists to requirements suitable for software.

A.1.5.4 A requirements validation is performed if possible.

Requirements validation is the process of returning to the original statement of requirements and
examining the detailed, analyzed list in light of the original. In some cases, such as reachability analysis
of communication protocols, requirements validation can be automated.

A.1.5.5 Much of the development effort concerns getting the requirements right.

This is true, at least, of experienced software developers who have discovered that it is easier in the
long run to do something once right, than several times wrong. Long and detailed scrutiny of
requirements is a marker of successful developers.

A.1.5.6 Prototyping or simulation is an important tool.

Prototypes or simulations are useful in three ways in software development (Preckshot 1993). First,
they are often used to demonstrate proposed designs to prospective users as an iterative method of
refining requirements. Second, they may be used to test an approach to solving a problem in which
there are uncertainties, including hardware performance uncertainties. Third, they may be used in the
traditional sense of an engineering prototype, to demonstrate or validate performance of a scalable
portion of the final system.

A.1.5.7 Critical components are identified early.

This point was emphasized by several respondents and reflects the view that management must
identify where to apply the most valuable resources (personnel) early, so that they have time to solve
the problems. This is a form of development risk management.

A.1.5.8 Development activities promote early detection of errors.

It is a widely held view in the software industry that it is less costly to fix errors early in the
development process. It is true in general that bug fixes of late errors are often limited by earlier design
decisions and the small remaining time (schedule) and funds (budget). Early error detection is another
form of development risk management.

66

A.1.5.9 Defect tracking is done uniformly and consistently.

One of the indications of how well a software development organization is doing is the number of
software errors being committed. Error or defect tracking is not very easy, however, and represents
considerable effort to do in a statistically valid fashion. Invalid methods of error accounting affect both
estimates of software reliability and corrective efforts applied to the software development process.

A.1.5.10 Root causes of defects are determined and corrective actions are taken.

Once errors are identified and tracked, the reasons they occurred should be determined and then two
corrective actions should be taken: the product should be fixed and the development process should be
modified, if appropriate, to reduce the probability of similar errors in the future. This factor is typical of
developers that maintain close control of errors and error causes.

A.1.5.11 Testing is done in several levels, viz. unit, subsystem, system.

It has been found that testing at different levels is necessary because of two countervailing effects. As
level becomes more complex (toward system) low-level errors may only be exercised rarely, thus
reducing the probability of finding them. On the other hand, complex interaction errors may only exist
when the entire software system is assembled. Also, inasmuch as early error detection can only be done
on software that is ready early, perforce unit and subsystem testing must be done because the system is
not yet available. Consequently, testing at multiple levels of system assembly is done by high-reliability
software suppliers.

A.1.5.12 V&V is planned early in the life cycle and results are peer-reviewed.

Validation and verification as an afterthought is a marker of an inexperienced or sloppy developer.
V&V should be planned early so that sufficient resources can be allocated to accomplish it and so that
there is sufficient time to do it correctly. Peer review ensures that V&V results are not reviewed
exclusively by those who planned the tests, analyses, and inspections. This helps avoid “expectation
blindness,” in which the planners may see only the results they expected to get and ignore signs of
possible trouble.

A.1.5.13 The product is designed to validatable and verifiable.

Much as an electronic device can have test points built in for test and calibration, software can be
designed with a view to making V&V easier. This also means that design documentation and coding
style should permit review and easy understanding by others not directly involved in development.

A.1.5.14 A design philosophy suitable for safety-critical software is used.

In general, this means avoiding the use of “risky” practices. Depending upon the challenges the
developer must face (e.g., aerospace vehicle flight control is more difficult than reactor protection
systems), the most dependable and least complicated way of solving the software problem should be
selected.

A.1.5.15 There is extensive reuse of “middleware.”

“Middleware” is defined by the respondent that proposed this factor as middle-level subroutines that
are general enough to be used by several applications. Such routines are also known as “trusted”
routines, and reuse implies that a software developer maintains a library of trusted subroutines that are
well documented, extensively tested, and understood by the programming staff. The advantage of
reuse is that scarce intellectual resources are freed for application to problems specific to the software
job at hand. The disadvantage is that trusted routines may be misapplied because they “almost” fit the

67

function needed. Estimates in the literature suggest that reuse can save from 20% to 50% of the effort
involved in creating software modules from scratch, but claims of greater savings should be viewed
with caution unless the new application is very similar to previous applications.

A.1.5.16 Software layers are identified and managed appropriately according to risk.

This factor recommends an hierarchical structure for software and makes a statement about risk that is
ambiguous. From a software developer’s viewpoint, the riskiest software layers are those upon which
the whole product depends, so these must be done before any version of the product can be delivered.
From a regulator’s viewpoint, the riskiest software is that software that is essential for safety, followed
by that software that is important for safety, followed by all other software. The respondent probably
meant the first definition of risk.

A.1.5.17 An appropriate level of complexity is defined for the product and practices are
followed that control it.

The minimum level of complexity that the product must have is set by the functional complexity of the
requirements the product must meet. Many software products have more than the minimum
complexity because of implementation practices or because the designers choose an approach that is
unnecessarily complex. Complexity control must occur over the entire life cycle of the product because
unneeded complexity can creep in during requirements analysis, design, implementation, or
maintenance.

A.1.5.18 Project teams are small (6-8 members).

This factor addresses the difficulty of communication in large project teams. It can be done, but it is
difficult to maintain currency and direction in large project teams, and management’s role in defining
and maintaining critical interfaces and project team communications becomes more important as the
team gets larger. Small teams avoid many of the pitfalls.

A.1.5.19 Software interfaces are documented and controlled.

Software interfaces (subroutine calling conventions, system call conventions, interrupt handling,
network protocols, distributed system interactions) are always important and form a significant part of
design documentation. With large project teams or multiple software contractors, they are even more
important. Lack of interface documentation and control is almost always a sign of trouble.

A.1.5.20 Automated tools are used to enforce standards.

Automated tools, if easy to use, are a way of getting everyone on a team to do things the same way (the
tool way), and thus provide a relatively low-conflict way of enforcing standards. From a regulator’s
viewpoint, the use of automated tools improves consistency and performance (the job is more likely to
be done), both of which are positive factors.

A.1.6 Reliability and Safety Factors

These are factors directly related to producing safety-critical software.

A.1.6.1 Use of hazards analyses must be part of the development process for safety-critical
products.

Hazards analysis shows pathways a system can follow to get into hazardous conditions, and is
recommended by several experts to ensure that software takes these pathways into account. Hazards

68

can also be introduced by the selection of design approaches, certain hardware, software tools, or the
use of software itself as a solution to a safety problem. The same expert recommends additional
hazards analyses at points during the development life cycle to ensure that existing hazards continue to
be covered and that new hazards are not introduced.

A.1.6.2 Diversity used to improve reliability is a system issue; safety is a system issue.

Software diversity (e.g., N-version programming) has not yet been demonstrated to be adequate to
counter common-mode failure due to programming error. For this reason, diversity at the system level
(i.e., diverse, non-software methods) should be considered for improving total system reliability. Safety
is a system issue, not solely a software issue. In safety systems containing software, software is only
one of several components that must function correctly to perform the safety functions. Like diversity
for reliability, non-software elements should be used to improve total system safety.

A.1.6.3 Accidents are often caused by non-technological factors.

The safety system of which software is a part may be circumvented, turned off, or driven into failure by
operator actions. Neither the system or the software should be expected to prevent these problems.

A.1.6.4 Ultra-high reliability (10-7 to 107 failures per demand) cannot be assured by currently
known means.

No known method of testing can be or has been applied for sufficient time or number of demands to
demonstrate ultra-high reliability. No method of logical analysis has yet been accepted by safety
system experts as sufficient to prove that ultra-high reliability has been achieved. Therefore, claims of
ultra-high reliability should be viewed with caution. System designs that depend upon ultra-high
reliability of components should receive the highest level of scrutiny.

A.1.6.5 The current practical limitation of testing is about 104 to 10-5 failures per demand.

This is based upon approximately two years of testing time on an unchanged product without error.
Since software products, including compilers, linkers, and other software tools used to develop safety
software, often have a new version cycle of approximately two years, two years may be the practical
maximum testing time available in the current commercial environment.

A.1.6.6 Complexity measures are of very limited utility in estimating software reliability or
remaining software errors.

The most effective use of complexity metrics is as a guide for allocating resources during development
(Preckshot 1993). No complexity metrics have been validated against reliability measures or software
errors. In the opinion of software safety experts, complexity metrics are “snake o0il” (Lawrence 1992).

A.1.6.7 Degrees of reliability better than 10-3 failures per demand require much larger
investments.

Estimates of the development cost of space shuttle flight software are that it cost five to ten times what
comparable ground support software cost to develop. Additional quality control measures are
expensive, and justified where consequences of failure are great.

A.1.7 Negative Factors

These are factors whose presence should be cause for caution or more thorough scrutiny.

69

A.1.7.1 There is high turnover.

The most obvious implication of high turnover is that building a team of high-quality people with a
team memory is impossible. Less obvious is the fact that high turnover is a comment by programmers
and managers who leave on the competence of management that is left behind. It should not be
ignored.

A.1.7.2 Projects are schedule-driven, rather than quality-driven.

The first victims of a missed deadline are usually quality assurance and documentation. The next
victim is the testing program. A “deliver at all costs” mentality is cause for caution.

A.1.7.3 Organizational process history is short or lacking.

Most respondents were explicit about the length of time it takes to build a quality software operation.
SEI generally regards maturity level changes as requiring significant time (at least upwards). ISO
requires several years to achieve certification.

A.1.7.4 Management cannot enforce stable requirements.

Stable and complete requirements are necessary for quality software products, but the role of
management in ensuring this cannot be emphasized enough. Not only must management demand that
requirements be locked down, but management itself must not be the source of requirements
thrashing. Requirements instability and weak management control are indicators of potential failures.

A.1.7.5 Management’s estimates of product reliability greatly exceed what is actually
measurable or provable.

Unrealistic claims of product reliability may be an indication that management does not understand
the limits of the current state of the art in software development. Such claims should be investigated
and management should be given an opportunity to prove its claims.

A.1.7.6 Management has a record of failing to meet predicted cost, schedule,
and quality goals for products.

This is typically an indication of management by chaos or paradoxically, schedule-driven rather than
quality-driven development. Schedule- and budget-driven development schemes often fail to meet
delivery schedules because of product non-performance problems. Something is delivered, but it is not
the contracted-for product. A record of failing to meet cost, schedule, and quality goals should be taken
seriously as an indicator of deeper troubles.

A.1.7.7 The organization fails to track errors and causes.

An organization’s record of errors, causes, and corrective actions is its win-loss track record. No record,
or a haphazard record, should be taken in default as meaning a bad record.

A.1.7.8 The development effort is underfunded.

Several of the developers interviewed suggested that most large government software contracts are
underfunded by at least a factor of two with the expectation that more funds can be obtained later by
litigation, contract expansion, or cost overrun procedures. Whatever the reason, underfunding results
in staff transients and failures to carry out “non-essential” activities such as quality assurance,

70

documentation, and V&V. While it may be difficult for an outside reviewer to estimate what a correct
funding profile should be, this negative factor is a very real one.

A.1.7.9 The organization exhibits “kill the messenger” syndrome.

Several of the developers had administrative procedures by which bearers of bad tidings could
unburden themselves without jeopardizing their careers. They noted that organizations without these
mechanisms were often the last to know about internal problems.

A.1.8 Product Factors

Product factors characterize the software product itself. The factors listed below represent product
characteristics that are considered low-risk implementation methods for ultra-reliable software. The
presence of these factors is considered a positive indication of lowered complexity or easier error
detection.

Product factors are not usually found in standards or process models, because standards setters and
process model makers consider that such factors restrict the generality of the standard or process
model. Nonetheless, where safety-critical software is concerned, these design factors are useful as

product quality indicators. The British Ministry of Defence (MoD) has taken this approach, for instance,
in the first draft of its proposed standards for safety-critical software (MoD 1991a, 1991b).

A.1.8.1 No interrupts.

The use of interrupts, beyond a simple clock interrupt, is considered a higher-risk implementation
method because of the extra care required to ensure correct synchronization between interrupt code
and interrupted code, and to ensure that interrupted code is correctly resumed.

A.1.8.2 No multi-tasking.

Multi-tasking requires context switching and task management in addition to the complications
attendant upon using interrupts.

A.1.8.3 Simple loop.

A single-loop program structure is the simplest program organization capable of continuous operation
that is possible.

A.1.8.4 Deterministic, predictable timing.

Evidence that software product timing is a predictable function of load, and that load is limited by
design is a positive factor. See Preckshot (1993) for additional information.

A.1.8.5 No pointers.

The use of explicit pointers (addresses) of data has been taken by some as a risky practice. The potential
exists for errors in programmer-directed address arithmetic which would not exist if named variables
were used and the addresses were computed automatically by compiler.

71

A.1.8.6 Strong data typing.

Data typing permits compilers to detect data misuse errors (e.g., using an integer as if it were a floating
point number). This class of error represents a significant proportion of all errors made, and strong data
typing with good compilers almost eliminates it.

A.2.0 Part 2—Managerial/Technical View

As required by the statement of work, the design factors are separated into two groups, those primarily
involving management considerations, and those involving primarily technical considerations.

A.2.1 Management Design Factors

A.2.1.1 General

There is an organizational commitment to quality.

There is longevity in personnel, policy and process.

The company has experience with safety-critical applications.
There is continuous process improvement.

Automation is used where appropriate.

Vendors, products and services are certified.

Software is the company’s primary business.

The organization adapts to changing environments.

The organization’s goal is defect-free software.

A.2.1.2 Process Control

Processes are well-defined.

A process is stabilized by measurement and feedback.

The number of process variants is reduced by standardization.
Processes are improved only after they are stabilized.

Data collection and use of data is balanced.

A.2.1.3 Management Action

The company reward structure matches the quality commitment.

Management uses process models.

There is constant process measurement and improvement effort.

Management makes predictions using models.

Management achieves predicted cost, schedule, and quality goals more often than not.
Management controls risks by adopting appropriate strategies.

Management abandons methods that do not work.

Management ensures planning, production and control of documentation.
Management invites external review.

Improvement takes time—an average of two years.

72

A.2.1.4 Personnel

Programming skill is not enough; some people must be skilled in the problem domain.
High intellectual ability of staff is crucial to success.
Inaccurate interpersonal communications are an obstacle to producing high-reliability software.

Personnel in influential positions should be highly skilled in all aspects of the development of high-
reliability software.

Project teams are small.

A.2.2 Technical Design Factors

A.2.2.1 General

Reviews, walkthroughs, inspections are used.

Automation is used where appropriate.

Automated tools are used to enforce standards.

Degrees of reliability better than 10-3 failures per demand require large investments.
Configuration management is used extensively and is independent of the development

organization.

A.2.2.2 Technical Planning

An appropriate life cycle model is selected.
Development activities promote early detection of errors.

Software layers are identified and managed appropriately according to risk.

A.2.2.3 Requirements Specification

Requirements are stable.
Requirements analysis is performed.
Requirements validation is performed.

Prototyping and simulation are important tools.

A.2.2.4 Design Specification

Critical components are identified early.
A design philosophy suitable for safety-critical software is used.

An appropriate level of complexity is defined for the product and practices are followed that
control it.

The product is designed to be verifiable and validatable.

A.2.2.5 Implementation (and unit test)

There is extensive reuse of “middleware.”
Software interfaces are documented and controlled.

Testing is done in several levels, viz. unit, subsystem, system.

73

A.2.2.6 Integration

Testing is done in several levels, viz. unit, subsystem, system.

A.2.2.7 Installation

Testing is done in several levels, viz. unit, subsystem, system.

A.2.2.8 Software QA

Software QA is independent of development organization.
Quality must be built-in—testing cannot find all defects.
Defect tracking is done uniformly and consistently.

Root cause of defects are determined and corrective actions are taken.

A.2.2.9 Safety

Use of hazards analyses must be part of the development process.

Diversity is used to improve reliability; this is a system issue.

Accidents are often caused by non-technological factors.

Ultra-high reliability cannot be assured by currently known means.

Complexity measures are of very limited utility in estimating software reliability or remaining

errors.

A.2.2.10 V&V

V&V is independent of development organization.
Requirements validation is performed.
V&V is planned early in the life cycle, and results are peer-reviewed.

The product is designed to be verifiable and validatable.

A.2.2.11 Testing

Testing is independent of the development organization.
Testing is done in several levels—unit, subsystem, system.

The current practical limitation of testing is about 104 to 105 failures per demand.

A.2.2.12 Product Factors

No interrupts.

No multi-tasking.

Simple loop.

Deterministic, predictable timing.
No pointers.

Strong data typing.

74

A.3.0 Part 3—SEI/ISO Factor List

The SEI/ISO factor list from Ploof & Preckshot (1993) is repeated here for the reader’s convenience.
Individual factors are lettered rather than numbered to distinguish them from Task 2 factors.

A.3.1 Management (MN)

A. All levels of management are committed to quality.
B. Policies are in place for software development and for assuring software quality.

C. There is a well-defined organizational structure with clear assignments of responsibilities and
independence between critical quality activities and software developers.

Needed resources are provided.
Appropriate training is provided to personnel.

Intergroup coordination is planned and executed.

o= my

There are documented plans for each project, including;:
1. An overall development plan,

2. A quality management plan,

3. Software development phase plans,

4. A product review and corrective action plan.

H. Management is involved in continuous process improvement:
1. Goals are established and process is measured.
2. There are independent process audits and management reviews.
3. Improvement actions are taken.

A.3.2 Software Life Cycle (SL)

I. An organization-wide life cycle model exists.

J. A product life cycle model is created from the organization life cycle model for each product or
group of products.

K. The product development plan for each life cycle phase includes:
Progress control,

Validation and verification (V&V) for each phase,
Documentation for each phase,

Planned reviews,

Configuration control,

Quality activities to ensure all of the above.

A

Requirements are clearly specified, understood, and verified.
. Design is clearly specified, understood, and verified.
Software is developed in a defined and disciplined manner.
Software is independently tested and validated.
Methods, techniques, and tools are integrated into the software development process.

Processes for replication, delivery, and installation are defined and documented.

7O PO Zg0

Product maintenance process follows a similar rigorous model.

75

A.3.3 Supporting Activities (SA)

S. Configuration management is defined and performed.

T. Required documentation is defined and it is produced on time.
U. Measurement of process and product is defined and executed.
V.

Commercial off-the-shelf (COTS) software and software tools used during development are of
sufficient quality that they do not degrade the quality of the end product.

A.3.4 Contractual (CT)

W. ISO 9000 includes contractual requirements that are not strictly necessary for quality.

X. (added) SEI has prime contractor/subcontractor contract management goals that are related to DOD
interests.

76

Annex B: Task 16A Vendor Assessment—
Merged List of Factors

This appendix arranges design factors from Task 2 and those discovered in the first work item of Task
16 into related groups. Large X's denote explicit statements or agreement with a particular design
factor. Small x’s denote implicit agreement that is inferred from similar requirements or concentration
on related subjects. A blank means that there is insufficient information to state that agreement exists or
that there is specific disagreement. The X’s and x’s should be interpreted as answers to the question
“would the organization agree with this design factor?”

Legend:
X Explicitly required
X Implicitly required or deduced from other requirements
blank Insufficient information.
FACTORS SEI | ISO | T2 | Other
Quality Commitment Group:
A. All levels of management are committed to quality. X X X
A1.1.1. Alllevels of the organization are committed to quality. X
A.1.1.12. The organizational goal is defect-free software. X
A.1.1.13. Quality must be built in; testing cannot find all defects. X
A.1.3.1. The reward structure matches the quality commitment. X
Policy and Documentation Group:
B. Policies are in place for software development and for ensuring X X X
software quality.
C. There is a well-defined organizational structure with clear X X
assignments of responsibilities and independence between critical
quality activities and software developers.
G. There are documented plans for each project, including;: X X
1. An overall development plan.
2. A quality management plan.
T. Required documentation is defined and produced on time. X X
A.1.3.8. Management ensures planning, production, and control of X
documentation.
A.1.5.19. Software interfaces are documented and controlled. X X X
A.1.1.2. There is longevity in personnel, policy, and process. X X

77

Personnel Qualifications Group:

D. Needed resources are provided (i.e., qualified personnel). X X
E. Appropriate training is provided to personnel. X X
A.14.1. Programming skill is not enough; some personnel must be skilled in X
the problem domain.
A.1.4.2. High intellectual ability of staff is critical to success. X
A.1.43. Inaccurate interpersonal communications are an obstacle to X
producing high-reliability software.
A.14.4. Personnel in influential positions should be highly skilled in all X
aspects of the development of high-reliability software.
A.1.1.2. There is longevity in personnel, policy, and process. X
Independence Group:
O. Software is independently tested and validated. X X
Al114. Testing, V&V, and SQA are independent. X X
Independent Review Group:
A.139. Management invites external review. X
A.1.5.12. V&V is planned early in the life cycle and results are peer-reviewed. X
H2. There are independent process audits and management reviews. X
Resource Group:
D. Needed resources are provided. X X
E. Appropriate training is provided to personnel. X X
Team Coordination Group:
F. Intergroup coordination is planned and executed. X X
A.1.5.18. Project teams are kept small (6-8 members). X
A.14.3. Inaccurate interpersonal communications are an obstacle to X
producing high-reliability software.
Process Improvement Group:
H. Management is involved in continuous process improvement:
1. Goals are established and process is measured, X X
2. There are independent process audits and management reviews, | X
3. Improvement actions are taken. X X
A.1.1.2 There is longevity in personnel, policy, and process. X X
A.1.1.6 There is continuous process improvement.
A.13.2. Management uses process models. X
A.133. Thereis constant process measurement and improvement effort. X X
A.13.7. Management abandons methods that do not work. X
A.1.3.10. Improvement takes time—an average of 2 years. X X

78

Process Measurement Group:

U. Measurement of process and product is defined and executed. X X X
A.121. Processes are defined. X
A.12.2. Process is stabilized by measurement and feedback. X
A.1.2.3. The number of process variants is reduced by standardization. X
A.1.24. Processes are improved only after they are stabilized. X
A.125 Data collection and use of data is balanced. X
Development Risk Group:
Gl1. An overall development plan exists for each project. X X
G4. A product review and correction plan exists for each project. X X
K1. The product development plan includes progress control. X
A.13.4. Management makes predictions using models. X
1.3.5. Management achieves predicted cost, schedule, and quality goals X X X
more often than not.
A.1.3.6. Management controls risks by adopting appropriate strategies. X
A.1.5.16. Software layers are identified and managed appropriately X
according to risk.
Life Cycle Group:
L An organization-wide life cycle model exists. X
J. A product life cycle model is created from the organization life cycle| X X X
model for each product or group of products.
G3. (There are documented) software development phase plans (for X | X
each project).
K. The product development plan for each life cycle phase includes: X X
1. Progress control, X X
2. Validation and verification (V&V) for each phase, X X
3. Documentation for each phase, X X
4. Planned reviews, X X
5. Configuration control, X X X
6. Quality activities to ensure all of the above. X X
A.1.1.5. An appropriate life cycle model is used. X
A.15.1. V&V and SQA are coordinated with development activities. X X
Requirements Group:
L. Requirements are clearly specified, understood, and verified. X X X
A.1.5.2. Requirements are stable. X
A.1.53. Requirements analysis is performed. X
A.15.4. Requirements validation is performed, if possible. X
A.15.5. Much of development effort concerns getting the requirements X

right.

79

Development Attributes Group:

L. Requirements are clearly specified, understood, and verified. X X X

M. Design is clearly specified, understood, and verified. X X X

N. Software is developed in a defined and disciplined manner. X X

V&V Group:

O. Software is independently tested and validated. X X

A151 V&V and SQA are coordinated with development activities. X b X

A.1.5.11. Testing is done in several levels, viz., unit, subsystem, system. X

A.15.12. V&V is planned early in the life cycle and results are peer-reviewed. X

A.1.5.13. The product is designed to be validatable and verifiable. X

Product Delivery Group:

Q. Processes for replication, delivery, and installation are defined and ? X
documented.

A.1.13. Configuration management is used extensively (i.e., at delivery). X

A.1.15. Anappropriate life cycle model is used (i.e., delivery is part of the X
life cycle).

Software Maintenance Group:

R. Product maintenance process follows a similar rigorous model as X X
development.

Configuration Management Group:

S. Configuration management is defined and performed. X X X

A.1.13. Configuration management is used extensively. X X X

Tools Group:

P. Methods, techniques, and tools are integrated into the software X | X X
development process.

A.1.1.7. Reviews, walkthroughs, and inspections are used. X X X

A.1.1.8. Automation is used where appropriate. X X

A13.7 Management abandons methods that do not work. X

A.1.5.6. Prototyping or simulation is an important tool. X

A.1.5.20. Automated tools are used to enforce standards. X

COTS Group:

V. Commercial off-the-shelf (COTS) software and software tools used X X
during development are of sufficient quality that they do not
degrade the quality of the end product.

A.1.19. Vendors, products, and services are certified. X X X

80

Contracts Group:

W. ISO 9000 includes contractual requirements that are not strictly
necessary for quality.
X. SEI has prime contractor / subcontractor contract management goals

that are related to DOD interests.

Miscellaneous Opinions Group:

A.1.1.10. Software is the company’s primary business. X

A.1.1.11. The organization adapts to changing environments. X

A.15.15. There is extensive reuse of “middleware.” X

Early Problem Detection Group:

A.15.7. Critical components are identified early. X

A.15.8. Development activities promote early detection of errors. X

A.15.17. An appropriate level of complexity is defined for the product and X
practices are followed that control it.

Defect Tracking Group:

G3. (There is) a product review and corrective action plan (for each X
project).

A.1.1.12. The organizational goal is defect-free software. X

A.15.9. Defect tracking is done uniformly and consistently. X

A.1.5.10. Root causes of defects are determined and corrective actions are X
taken.

Reliability Practices Group:

A.1.5.14. A design philosophy suitable for safety-critical software is used. X

A.1.6.1. Use of hazards analyses must be part of the development process X
for safety-critical products.

A.1.6.2. Diversity used to improve reliability is a system issue. Safety is a X
system issue.

A.1.6.3. Accidents are often caused by non-technological factors. X

A.1.6.4. Ultra-high reliability (107 to 109 failures per demand) cannot be X
ensured by currently known means.

A.1.6.5. The current practical limitation of testing is about 104 to 10™ X
failures per demand.

A.1.6.6. Complexity measures are of very limited utility in estimating X
software reliability or remaining software errors.

A.1.6.7. Degrees of reliability better than 103 failures per demand require X

much larger investments.

81

Negative Factors Group:

A1.7.1. Thereis high turnover. X

A.1.7.2. Projects are schedule-driven, rather than quality-driven. X

A.1.7.3. Organizational process history is short or lacking. X

A.1.74. Management cannot enforce stable requirements. X

A.1.75. Management's estimates of product reliability greatly exceed what X
is actually measurable or provable.

A.1.7.6. Management has a record of failing to meet predicted cost, X
schedule, and quality goals for products.

A.1.7.7. The organization fails to track errors and causes. X

A.1.7.8 The development effort is underfunded. X

A.1.79 The organization exhibits “kill the messenger” syndrome. X

Product Factors Group:

A.18.1. No interrupts. :
A.1.8.2. No multi-tasking. *
A.1.8.3. Simple loop. *
A.1.84. Deterministic, predictable timing. **
A.1.8.5. No pointers. *
A.18.6 Strong data typing *

“See MoD 1991a, 1991b.
" See Preckshot 1993.

82

